<u>Answer:</u> The equilibrium concentration of
is 0.332 M
<u>Explanation:</u>
We are given:
Initial concentration of
= 2.00 M
The given chemical equation follows:

<u>Initial:</u> 2.00
<u>At eqllm:</u> 2.00-2x x x
The expression of
for above equation follows:
![K_c=\frac{[CO_2][CF_4]}{[COF_2]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCO_2%5D%5BCF_4%5D%7D%7B%5BCOF_2%5D%5E2%7D)
We are given:

Putting values in above expression, we get:

Neglecting the value of x = 1.25 because equilibrium concentration of the reactant will becomes negative, which is not possible
So, equilibrium concentration of ![COF_2=(2.00-2x)=[2.00-(2\times 0.834)]=0.332M](https://tex.z-dn.net/?f=COF_2%3D%282.00-2x%29%3D%5B2.00-%282%5Ctimes%200.834%29%5D%3D0.332M)
Hence, the equilibrium concentration of
is 0.332 M
Answer:
3. Which side of the chain should you count from when naming organic compounds?
C) Side that will give you the longest Carbon chain
4. What is the pH of a solution with a pOH of 10?
C) 4
pH + pOH = 14
pH + 10 = 14
pH = 14 - 10
pH = 4
<u>-TheUnknownScientist</u>
Organism: Apple
All cells from the apple come from cell division occurring from the apple in order for it to grow.
An apple has multiple cells
The small living part in an apple is a cell thus showing that cells are the basic living unit.
What are the following measurements?
I think it was sue to she has all the details to seem like it was her