Answer:
9/7
Step-by-step explanation:
Answer: 2 lbs of cherries
Cherries = $5 per pound
Oranges = $2 per pound
Total Cost = $18
Total weight = 6 lb
------------------------------------
Define x and y
------------------------------------
Let x be the number of lb of cherries
Let y be the number of lb of oranges
------------------------------------
Construct equations
------------------------------------
x + y = 6 ---------------------------- (1)
5x + 2y = 18 ---------------------------- (2)
------------------------------------------------------------------------
Solve x and y
------------------------------------------------------------------------
From equation (1):
x + y = 6
x = 6 - y
------------------------------------------------------------------------
Substitute x = 6 - y into equation 2
------------------------------------------------------------------------
5x + 2y = 18
5 (6 - y) + 2y = 18
30 - 5y + 2y = 18
3y = 30 - 18
3y = 12
y = 4
------------------------------------------------------------------------
Substitute y = 4 into equation (1)
------------------------------------------------------------------------
x + y = 6
x + 4 = 6
x = 2
------------------------------------------------------------------------
Find the weight of cherries and oranges
------------------------------------------------------------------------
Cherry = x = 2 lb
Oranges = y = 4 lbs
------------------------------------------------------------------------
Answer: Alex bought 2 lb of cherries
------------------------------------------------------------------------
Answer:
Kendra ate 1/4 pounds of blueberries.
Step-by-step explanation:
The amount of blueberries Sean had = 1/3 pound
The amount of blueberries Kendra ate = 3/4 of Total available
= 3/4 of (1/3 pounds)
Now, we need to find out the 3/4 amount of 1/3 pound.
3/4 of 1/3 pound = 
⇒ 3/4 of the amount 1/3 pound = 1/4 pound
Hence Kendra ate 1/4 pounds of blueberries.
Answer:
y = 3x + 62
Step-by-step explanation:
Trend line equation in the form :
y = mx + b
m = slope
b = intercept
Using the points :
(0, 62) ; (6, 80)
Slope, m = Rise / Run = (y2-y1) / (x2 - x1)
y2 = 80 ; y1= 62 ; x2 = 6 ; x1 = 0
m = (80 - 62) / (6 - 0)
m = 18 / 6
m = 3
Intercept, b = value of y when x = 0
(0, 62) ; hence, b = 62
y = 3x + b
y = 3x + 62