1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
White raven [17]
3 years ago
12

What is 2+2? PLS HELPPPPPP

Mathematics
2 answers:
Anton [14]3 years ago
8 0

Answer:

ITS 22 ITS 22 BECAUSE IF YOU ADD THE TWO 2'S TOGETHER YOU GET 22

Step-by-step explanation:

nah it's 4

GREYUIT [131]3 years ago
6 0
I think it 70 or 4
ion really know
You might be interested in
- Cindy spent $6 on her meal. She spent $4
jok3333 [9.3K]

Answer:

She can buy 62 smoothies

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Let and be differentiable vector fields and let a and b be arbitrary real constants. Verify the following identities.
elena-14-01-66 [18.8K]

The given identities are verified by using operations of the del operator such as divergence and curl of the given vectors.

<h3>What are the divergence and curl of a vector field?</h3>

The del operator is used for finding the divergence and the curl of a vector field.

The del operator is given by

\nabla=\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}

Consider a vector field F=x\^i+y\^j+z\^k

Then the divergence of the vector F is,

div F = \nabla.F = (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(x\^i+y\^j+z\^k)

and the curl of the vector F is,

curl F = \nabla\times F = \^i(\frac{\partial Fz}{\partial y}- \frac{\partial Fy}{\partial z})+\^j(\frac{\partial Fx}{\partial z}-\frac{\partial Fz}{\partial x})+\^k(\frac{\partial Fy}{\partial x}-\frac{\partial Fx}{\partial y})

<h3>Calculation:</h3>

The given vector fields are:

F1 = M\^i + N\^j + P\^k and F2 = Q\^i + R\^j + S\^k

1) Verifying the identity: \nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2

Consider L.H.S

⇒ \nabla.(aF1+bF2)

⇒ \nabla.(a(M\^i + N\^j + P\^k) + b(Q\^i + R\^j + S\^k))

⇒ \nabla.((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

Applying the dot product between these two vectors,

⇒ \frac{\partial (aM+bQ)}{\partial x}+ \frac{\partial (aN+bR)}{\partial y}+\frac{\partial (aP+bS)}{\partial z} ...(1)

Consider R.H.S

⇒ a\nabla.F1+b\nabla.F2

So,

\nabla.F1=(\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(M\^i + N\^j + P\^k)

⇒ \nabla.F1=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z}

\nabla.F2=(\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(Q\^i + R\^j + S\^k)

⇒ \nabla.F1=\frac{\partial Q}{\partial x}+\frac{\partial R}{\partial y}+\frac{\partial S}{\partial z}

Then,

a\nabla.F1+b\nabla.F2=a(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z})+b(\frac{\partial Q}{\partial x}+\frac{\partial R}{\partial y}+\frac{\partial S}{\partial z})

⇒ \frac{\partial (aM+bQ)}{\partial x}+ \frac{\partial (aN+bR)}{\partial y}+\frac{\partial (aP+bS)}{\partial z} ...(2)

From (1) and (2),

\nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2

2) Verifying the identity: \nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

Consider L.H.S

⇒ \nabla\times(aF1+bF2)

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z})\times(a(M\^i+N\^j+P\^k)+b(Q\^i+R\^j+S\^k))

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z})\times ((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

Applying the cross product,

\^i(\^k\frac{\partial (aP+bS)}{\partial y}- \^j\frac{\partial (aN+bR)}{\partial z})+\^j(\^i\frac{\partial (aM+bQ)}{\partial z}-\^k\frac{\partial (aP+bS)}{\partial x})+\^k(\^j\frac{\partial (aN+bR)}{\partial x}-\^i\frac{\partial (aM+bQ)}{\partial y}) ...(3)

Consider R.H.S,

⇒ a\nabla\times F1+b\nabla\times F2

So,

a\nabla\times F1=a(\nabla\times (M\^i+N\^j+P\^k))

⇒ \^i(\frac{\partial aP\^k}{\partial y}- \frac{\partial aN\^j}{\partial z})+\^j(\frac{\partial aM\^i}{\partial z}-\frac{\partial aP\^k}{\partial x})+\^k(\frac{\partial aN\^j}{\partial x}-\frac{\partial aM\^i}{\partial y})

a\nabla\times F2=b(\nabla\times (Q\^i+R\^j+S\^k))

⇒ \^i(\frac{\partial bS\^k}{\partial y}- \frac{\partial bR\^j}{\partial z})+\^j(\frac{\partial bQ\^i}{\partial z}-\frac{\partial bS\^k}{\partial x})+\^k(\frac{\partial bR\^j}{\partial x}-\frac{\partial bQ\^i}{\partial y})

Then,

a\nabla\times F1+b\nabla\times F2 =

\^i(\^k\frac{\partial (aP+bS)}{\partial y}- \^j\frac{\partial (aN+bR)}{\partial z})+\^j(\^i\frac{\partial (aM+bQ)}{\partial z}-\^k\frac{\partial (aP+bS)}{\partial x})+\^k(\^j\frac{\partial (aN+bR)}{\partial x}-\^i\frac{\partial (aM+bQ)}{\partial y})

...(4)

Thus, from (3) and (4),

\nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

Learn more about divergence and curl of a vector field here:

brainly.com/question/4608972

#SPJ4

Disclaimer: The given question on the portal is incomplete.

Question: Let F1 = M\^i + N\^j + P\^k and F2 = Q\^i + R\^j + S\^k be differential vector fields and let a and b arbitrary real constants. Verify the following identities.

1)\nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2\\2)\nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

8 0
1 year ago
Eddie is practicing wind sprints during his summer break. He’s able to run 72 meters in 12 seconds. If d represents distance and
KATRIN_1 [288]

Answer:

what grade is this in?

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Suppose you add two vectors A and B . What relative direction between them produces the resultant with the greatest magnitude? W
Anna71 [15]

Answer: The resultant would be the sum and the difference between the vectors.

Step by step explanation: 1. The possible resultant is between the sum of the 2 vectors and the difference between the two vectors.

2. The greatest magnitude is when the vectors lie in the same direction and the sum would be the scalar sum of the two vectors. The angle between the two would be zero degree.

6 0
3 years ago
Solve the equation 5x-2x^2+1
Pani-rosa [81]

Answer:

Step-by-step explanation:

If you call "5x-2x^2+1" an "equation," then you must equate 5x-2x^2+1 to 0:

5x-2x^2+1 = 0

This is a quadratic equation.  Rearranging the terms in descending order by powers of x, we get:

-2x^2 + 5x + 1 = 0.  Here the coefficients are a = -2, b = 5 and c = 1.

Use the quadratic formula to solve for x:

First find the discriminant, b^2 - 4ac:  25 - 4(-2)(1) = 25 + 8 = 33

Because the discriminant is positive, the roots of this quadratic are real and unequal.

                                                             -b ± √(discriminant)

Applying the quadratic formula   x = --------------------------------

                                                                         2a

we get:

      -5 ± √33           -5 + √33

x = ----------------- = --------------------- and

           2(-2)                     -4

                                  -5 - √33

                                 ---------------

                                         -4

5 0
3 years ago
Other questions:
  • A criminologist developed a test to measure recidivism, where low scores indicated a lower probability of repeating the undesira
    11·2 answers
  • Find the sum of 5m+3n+p,-5p+3n,and 2n-m
    12·1 answer
  • JK in the coordinate plane has endpoints with coordinates (-4, 11) and (8,
    10·1 answer
  • Find the solution of the inequality
    11·2 answers
  • Which is a multiple of 15?
    6·1 answer
  • Help me, answer if you know also pls don’t waste my points
    8·2 answers
  • Evaluate 42,147÷63. Round to the nearest whole number, if necessary.
    6·1 answer
  • HELP ASAP<br><br> I need someone to help please I need to make my mom proud
    13·2 answers
  • TV=3x - 12 and TU=5x-24. What is the value of x?
    14·1 answer
  • URGENT PLEASE HELP WILL GIVE BRAINLIEST!!!!
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!