Answer:
Step-by-step explanation:
"The graph of f(x) is a horizontal compression of the graph of the parent function" is true; the graph will appear to be narrower than that of y = |x|. I would prefer to state "the graph of f(x) exhibits vertical stretching of the original (parent) function graph."
Answer:
Alternate Interior Angles
Step-by-step explanation:
Since they are inside the parallel lines, Alternate Exterior Angles and any other similar theorems can be ruled out.
Since they are on opposite sides of each other, Corresponding Angles and any other similar theorems can be ruled out.
Since they are far apart from each other, Supplementary Angles, Adjacent Angles, Vertical Angles, and any other similar definitions can be ruled out.
Therefore, we are left with Alternate Interior Angles.
Between -2&-1 is the answer
To solve this we are going to use formula for the future value of an ordinary annuity:
![FV=P[ \frac{(1+ \frac{r}{n} )^{nt} -1}{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3DP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%5E%7Bnt%7D%20-1%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
where

is the future value

is the periodic payment

is the interest rate in decimal form

is the number of times the interest is compounded per year

is the number of years
We know from our problem that the periodic payment is $50 and the number of years is 3, so

and

. To convert the interest rate to decimal form, we are going to divide the rate by 100%


Since the interest is compounded monthly, it is compounded 12 times per year; therefore,

.
Lets replace the values in our formula:
![FV=P[ \frac{(1+ \frac{r}{n} )^{nt} -1}{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3DP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%5E%7Bnt%7D%20-1%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
![FV=50[ \frac{(1+ \frac{0.04}{12} )^{(12)(3)} -1}{ \frac{0.04}{12} } ]](https://tex.z-dn.net/?f=FV%3D50%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7B0.04%7D%7B12%7D%20%29%5E%7B%2812%29%283%29%7D%20-1%7D%7B%20%5Cfrac%7B0.04%7D%7B12%7D%20%7D%20%5D)

We can conclude that after 3 years you will have $1909.08 in your account.