See picture below. Being that you did not provide possible answers, I don't know what answer you can choose from.
X=4.1
.,/.,/.,/.,./,/.,./,./,/.,/.,/.,/.,.,/<>,/><>?<?><?,>?<?></.,?>,?><?,?>,?><.?><
he elements of the Klein <span>44</span>-group sitting inside <span><span>A4</span><span>A4</span></span> are precisely the identity, and all elements of <span><span>A4</span><span>A4</span></span>of the form <span><span>(ij)(kℓ)</span><span>(ij)(kℓ)</span></span> (the product of two disjoint transpositions).
Since conjugation in <span><span>Sn</span><span>Sn</span></span> (and therefore in <span><span>An</span><span>An</span></span>) does not change the cycle structure, it follows that this subgroup is a union of conjugacy classes, and therefore is normal.
Answer:
2x - 10 = 10 - 3x
Simplifying
2x + -10 = 10 + -3x
Reorder the terms:
-10 + 2x = 10 + -3x
Solving
-10 + 2x = 10 + -3x
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '3x' to each side of the equation.
-10 + 2x + 3x = 10 + -3x + 3x
Combine like terms: 2x + 3x = 5x
-10 + 5x = 10 + -3x + 3x
Combine like terms: -3x + 3x = 0
-10 + 5x = 10 + 0
-10 + 5x = 10
Add '10' to each side of the equation.
-10 + 10 + 5x = 10 + 10
Combine like terms: -10 + 10 = 0
0 + 5x = 10 + 10
5x = 10 + 10
Combine like terms: 10 + 10 = 20
5x = 20
Divide each side by '5'.
x = 4
Simplifying
x = 4
Answer:
The probability that the next customer will purchase a wireless phone is 0.1
Step-by-step explanation:
The relative frequency approach states<em> how often something happens divided by all outcomes</em>.
In the example some of the customers entering a supermarket purchased a wireless phone.
Here all outcomes are 500 customer entering supermarket. And among these outcome purchasing wireless phone happened 50 times.
Then the probability that the next customer will purchase a wireless phone is
.
If we divide both sides by 50, we get
=0.1