<span>b)Determine your horisontal distance from window (ans. 1.5 m)
c)Calc the speed of ball as you catch it (ans: 8.2m/s)
I dont get what 42 m below the horizontal is, can someone give me direction on how to do this?
</span>
Where r is the radius of balloon.
Here mass of woman = 68 kg
Mass of air displaced by a balloon with volume V = 1.29*V
Mass of helium inside balloon = 0.178*V
Total mass to be lifted by balloon = 68 +0.178*V
Buoyant force = 1.29V-0.178V=1.112V
So we have 1.112 V = 68+ 0.178*V
0.934 V = 68
V = 72.81
\frac{4}{3} \pi r^{3}[/tex]= 72.81
r = 2.59 m
So radius of helium balloon = 2.59 m
Answer:
The magnitude of the average induced emf is 90V
Explanation:
Given;
area of the square coil, A = 0.4 m²
number of turns, N = 15 turns
magnitude of the magnetic field, B = 0.75 T
time of change of magnetic field, t = 0.05 s
The magnitude of the average induced emf is given by;
E = -NAB/t
E = -(15 x 0.4 x 0.75) / 0.05
E = -90 V
|E| = 90 V
Therefore, the magnitude of the average induced emf is 90V
Answer:
Explanation:
The frequency is 16.0 Hz. That means that 16 of these waves can pass a single point in 1 second. We are given frequency and wavelength. The equation that relates them is
where f is frequency, v is velocity, and λ is wavelength. Putting all this together:
and solving for velocity,
v = 16.0(97.5) so
v = 1560 m/s. This wave can travel 1560 meters in a single second!!! Now that we know this velocity, we can use it in a proportion to find our unknown, which is how long, t, it will take to hear this sound 11000m away. (11 km is 11000m):
and cross multiply to get
1560t = 11000 so
t = 7.1 seconds
Answer:
wouldnt a phone be one it takes pictures through reflection like a mirror