Answer:
C. The change of internal energy of a system is the sum of work and heat spent on it.
Explanation:
The law of conservation of Energy states that energy cannot be destroyed but can only be converted or transformed from one form to another. Therefore, the sum of the initial kinetic energy and potential energy is equal to the sum of the final kinetic energy and potential energy.
Mathematically, it is given by the formula;
Ki + Ui = Kf + Uf .......equation 1
Where;
Ki and Kf are the initial and final kinetic energy respectively.
Ui and Uf are the initial and final potential energy respectively.
The law of conservation of Energy is another way to describe the law of Thermodynamics. It states that the change of internal energy of a system is the sum of work and heat spent on it.
Mathematically, it is given by the formula;
ΔU = Q − W
Where;
ΔU represents the change in internal energy of a system.
Q represents the net heat transfer in and out of the system.
W represents the sum of work (net work) done on or by the system.
Answer:
The length of the solar day will get shorter.
Explanation:
- The blue planet Earth not only rotates around it's own axis but also rotates around the Sun and everyday it moves a little bit around the axis.
- Since the speed of the Earth's rotation on it's own axis and around the Sun is constant we don't feel the effects of the rotation.We can only feel the motion if the earth changes it's rotation speed.
- If by any means or chance the Earth stopped spinning (stopped rotation) then the atmosphere surrounding the Earth would be in motion and all the Earth's land would be scoured clean.
Wouldn't it be neat if an electron falling closer to the nucleus ... emitting a
photon ... actually gave out more energy than it needed to climb to its original
energy level by absorbing a photon ! If there were some miraculous substance
that could do that, we'd have it made.
All we'd need is a pile of it in our basement, with a bright light bulb over the pile,
connected to a tiny hand-crank generator.
Whenever we wanted some energy, like for cooking or heating the house, we'd
switch the light bulb on, point it towards the pile, and give the little generator a
little shove. It wouldn't take much to git 'er going.
The atoms in the pile would absorb some photons, raising their electrons to higher
energy levels. Then the electrons would fall back down to lower energy levels,
releasing more energy than they needed to climb up. We could take that energy,
use some of it to keep the light bulb shining on the pile, and use the extra to heat
the house or run the dishwasher.
The energy an electron absorbs when it climbs to a higher energy level (forming
the atom's absorption spectrum) is precisely identical to the energy it emits when
it falls back to its original level (creating the atom's emission spectrum).
Energy that wasn't either there in the atom to begin with or else pumped
into it from somewhere can't be created there.
You get what you pay for, or, as my grandfather used to say, "For nothing
you get nothing."
Answer:
A. 2.82 eV
B. 439nm
C. 59.5 angstroms
Explanation:
A. To calculate the energy of the photon emitted you use the following formula:
(1)
n1: final state = 5
n2: initial state = 2
Where the energy is electron volts. You replace the values of n1 and n2 in the equation (1):

B. The energy of the emitted photon is given by the following formula:
(2)
h: Planck's constant = 6.62*10^{-34} kgm^2/s
c: speed of light = 3*10^8 m/s
λ: wavelength of the photon
You first convert the energy from eV to J:

Next, you use the equation (2) and solve for λ:

C. The radius of the orbit is given by:
(3)
where ao is the Bohr's radius = 2.380 Angstroms
You use the equation (3) with n=5:

hence, the radius of the atom in its 5-th state is 59.5 anstrongs