Answer:
The kinetic energy of the mass at the instant it passes back through the equilibrium position is 0.06500 J.
Explanation:
Given that,
Mass = 2.15 kg
Distance = 0.0895 m
Amplitude = 0.0235 m
We need to calculate the spring constant
Using newton's second law

Where, f = restoring force


Put the value into the formula


We need to calculate the kinetic energy of the mass
Using formula of kinetic energy

Here, 

Here, 


Put the value into the formula


Hence, The kinetic energy of the mass at the instant it passes back through the equilibrium position is 0.06500 J.
Answer:
Hey!
_________________
Voltage (V) = 0.8V
Current (I) = 200 mA = 200/10^3 = 2/10
Resistance = ?
Resistance = Voltage / Current
Voltage = Current × Resistance
0.8 = 2/10 × Resistance
0.8×10/2 = Resistance
8/2 = Resistance
Resistance = 4 ohm
_________________
Hope it helps...!!!
Explanation:
Answer:
25 mm = 0 deg C
200 mm = 100 deg C
200 - 25 = 175 = change in thread per 100 deg C
95 - 25 = 70 mm - change in thread from 0 deg C
70 / 175 * 100 = 40 deg C final temperature at 95 mm
Answer:
5 m/s2
Explanation:
The total acceleration of the circular motion is made of 2 components: centripetal acceleration and linear acceleration of 4 m/s2. They are perpendicular to each other.
The centripetal acceleration is the ratio of instant velocity squared and the radius of the circle

So the magnitude of the total acceleration is

Answer:
time=4s
Explanation:
we know that in a RL circuit with a resistance R, an inductance L and a battery of emf E, the current (i) will vary in following fashion
, where
max=
Given that, at i(2)=
⇒
⇒
⇒
Applying logarithm on both sides,
⇒
⇒
⇒
Now substitute 
⇒
⇒
⇒
Applying logarithm on both sides,
⇒
⇒
⇒
now subs. 
⇒
also 
⇒
⇒