Answer:
The correct answer is 6 possible states
Explanation:
In the equation,
2Al(s) + 3Cl2(g) —> 2AlCl3(s),
the large number "3" in front of Cl2 indicates the the number of moles of Chlorine molecules needed to balance the equation.
Hope this will help you.
If you like my answer. Please mark it as brainliest And Be my follower if possible.
Answer:
A substance which burns in air and tends to produce heat and light is known as Combustible substances. Non-combustible substances are certain substances which are not combustible in the presence of air. Will not burn on being exposed to flame.
Learning Objective
Define the law of conservation of mass
Key Points
The law of conservation of mass states that mass in an isolated system is neither created nor destroyed by chemical reactions or physical transformations.
According to the law of conservation of mass, the mass of the products in a chemical reaction must equal the mass of the reactants.
The law of conservation of mass is useful for a number of calculations and can be used to solve for unknown masses, such the amount of gas consumed or produced during a reaction.
Terms
reactantAny of the participants present at the start of a chemical reaction. Also, a molecule before it undergoes a chemical change.
law of conservation of massA law that states that mass cannot be created or destroyed; it is merely rearranged.
productA chemical substance formed as a result of a chemical reaction.
History of the Law of the Conservation of Mass
The ancient Greeks first proposed the idea that the total amount of matter in the universe is constant. However, Antoine Lavoisier described the law of conservation of mass (or the principle of mass/matter conservation) as a fundamental principle of physics in 1789.
Antoine LavoisierA portrait of Antoine Lavoisier, the scientist credited with the discovery of the law of conservation of mass.
This law states that, despite chemical reactions or physical transformations, mass is conserved — that is, it cannot be created or destroyed — within an isolated system. In other words, in a chemical reaction, the mass of the products will always be equal to the mass of the reactants.
The Law of Conservation of Mass-Energy
This law was later amended by Einstein in the law of conservation of mass-energy, which describes the fact that the total mass and energy in a system remain constant. This amendment incorporates the fact that mass and energy can be converted from one to another. However, the law of conservation of mass remains a useful concept in chemistry, since the energy produced or consumed in a typical chemical reaction accounts for a minute amount of mass.
We can therefore visualize chemical reactions as the rearrangement of atoms and bonds, while the number of atoms involved in a reaction remains unchanged. This assumption allows us to represent a chemical reaction as a balanced equation, in which the number of moles of any element involved is the same on both sides of the equation. An additional useful application of this law is the determination of the masses of gaseous reactants and products. If the sums of the solid or liquid reactants and products are known, any remaining mass can be assigned to gas.
The question is incomplete, here is the complete question:
At a certain temperature this reaction follows second-order kinetics with a rate constant of 14.1 M⁻¹s⁻¹

Suppose a vessel contains SO₃ at a concentration of 1.44 M. Calculate the concentration of SO₃ in the vessel 0.240 seconds later. You may assume no other reaction is important. Round your answer to 2 significant digits.
<u>Answer:</u> The concentration of
in the vessel after 0.240 seconds is 0.24 M
<u>Explanation:</u>
For the given chemical equation:

The integrated rate law equation for second order reaction follows:
![k=\frac{1}{t}\left (\frac{1}{[A]}-\frac{1}{[A]_o}\right)](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B1%7D%7Bt%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%5BA%5D_o%7D%5Cright%29)
where,
k = rate constant = 
t = time taken= 0.240 second
[A] = concentration of substance after time 't' = ?
= Initial concentration = 1.44 M
Putting values in above equation, we get:
![14.1=\frac{1}{0.240}\left (\frac{1}{[A]}-\frac{1}{1.44}\right)](https://tex.z-dn.net/?f=14.1%3D%5Cfrac%7B1%7D%7B0.240%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B1.44%7D%5Cright%29)
![[A]=0.245M](https://tex.z-dn.net/?f=%5BA%5D%3D0.245M)
Hence, the concentration of
in the vessel after 0.240 seconds is 0.24 M