
![\bf \sqrt{n}< \sqrt{2n+5}\implies \stackrel{\textit{squaring both sides}}{n< 2n+5}\implies 0\leqslant 2n - n + 5 \\\\\\ 0 < n+5\implies \boxed{-5 < n} \\\\\\ \stackrel{-5\leqslant n < 2}{\boxed{-5}\rule[0.35em]{10em}{0.25pt}0\rule[0.35em]{3em}{0.25pt}2}](https://tex.z-dn.net/?f=%5Cbf%20%5Csqrt%7Bn%7D%3C%20%5Csqrt%7B2n%2B5%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bsquaring%20both%20sides%7D%7D%7Bn%3C%202n%2B5%7D%5Cimplies%200%5Cleqslant%202n%20-%20n%20%2B%205%20%5C%5C%5C%5C%5C%5C%200%20%3C%20n%2B5%5Cimplies%20%5Cboxed%7B-5%20%3C%20n%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B-5%5Cleqslant%20n%20%3C%202%7D%7B%5Cboxed%7B-5%7D%5Crule%5B0.35em%5D%7B10em%7D%7B0.25pt%7D0%5Crule%5B0.35em%5D%7B3em%7D%7B0.25pt%7D2%7D)
namely, -5, -4, -3, -2, -1, 0, 1. Excluding "2" because n < 2.
Answer:
sec²(x) - sec(x) + tan²(x) = (sec(x) - 1)(2sec(x) + 1)
Step-by-step explanation:
sec²(x) - sec(x) + tan²(x) =
= sec²(x) - sec(x) + [sec²(x) - 1]
= sec²(x) - sec(x) + [(sec(x) + 1)(sec(x) - 1)]
= sec(x)[sec(x) - 1] + [(sec(x) + 1)(sec(x) - 1)]
= (sec(x) - 1)(sec(x) + sec(x) + 1)
= (sec(x) - 1)(2sec(x) + 1)
Answer:
what does the fox
Step-by-step explanation:
rhfiuafb iuf9ednf kmbfgiu
Y=(x-3)^2+36
Using (a-b)^2=a^2-2ab+b^2, with a=x and b=3
y=(x)^2-2(x)(3)+(3)^2+36
y=x^2-6x+9+36
y=x^2-6x+45
Answer: Option C. y=x^2-6x+45
Answer:
147 r17
Step-by-step explanation: