Answer:
-13
Step-by-step explanation:
2x²+26x+156=0
x²+13x+78=0
x²+13x=-78
x²+13x+169/4=-143/4
(x+13/2)²=-143/4
x+13/2=(i√143)/2 or x+13/2=-(i√143)/2
x=(i√143)/2-13/2 or x=-(i√143)/2-13/2
(i√143)/2-13/2+(-(i√143)/2)-13/2=(i√143-13-i√143-13)/2=-26/2=-13
13. 1
14. 1
15. any number and 0 will have a quotient of 0.
for example 7/0=0 . 8/0=0 . 9/0=0
if you try and check your work using multiplication 7*0=0 . 8*0=0 . 9*0=0
then you will realize the rule is right
Answer=C 2 1/2
(12 1/2)÷5=2 1/2
or
12.5/5=2.5=2 1/2
The answer: m∡BCD = 130° .
_____________________________________
Explanation:
______________________________
m∡BCD = 9x - 5 = our answer.
_____________________________
Note: (9x - 5) + (m∡C IN Δ ACB)= 180 ;
____________________________
Reason: all angles on straight line add up to 180.
___________________________
Note: In Δ ACB; m∡A + m∡B + m∡c = 180.
_________________________________________
Reason: All three angles in any triangle add up to 180.
__________________________________________
Given Δ ACB, we are given:
_____________
m∡C= ?
m∡B = (4x + 5)
m∡A = 65
_____________________
So, given Δ ACB; m∡A + m∡B + m∡c = 180;
→Plug in our known values and rewrite:
___________________________________
Given Δ ACB; 65 + 4x + 5 + (m∡c) = 180;
→Simplify, and rewrite:
___________________________________
Given Δ ACB; 4x + 70 + (m∡c) = 180;
→Subtract "70" from each side of the equation; and rewrite:
___________________________________
Given Δ ACB; 4x + (m∡C) = 110;
→Subtract "4x" from EACH SIDE of the equation; to isolate: "(m∡c)" on one side of the equation; and "solve in terms of "(m∡C)" ;
______________________________________________
Given Δ ACB' m∡C = 110 - 4x ;
__________________________________________
So, we know that: (110 - 4x) + (9x - 5) = 180; (since all angles on a straight line add up to 180.
____________________
We can solve for "x".
____________________
(110 - 4x) + (9x - 5) = 180;
________________________
Rewrite as:
___________
(110 - 4x) + 1(9x - 5) = 180 ; (Note: there is an implied coefficient of "1"; since anything multiplied by "1" equals that same value).
_______________________
Note the "distributive property of multiplication":
_________________
a*(b+c) = ab + ac ; AND:
a*(b - c) = ab - ac .
_______________________
So, +1(9x - 5) = (+1*9x) - (+1*5) = 9x - 5 ;
__________________________
So we can rewrite:
___________________
(110 - 4x) + (9x - 5) = 180 ; as:
________________________
110 - 4x + 9x - 5 = 180 ; We can simplify this by combining "like terms" on the "left-hand side" of the equation:
_________________________________________________
110 - 5 = 105 ;
-4x + 9x = 5x;
______________
So, rewrite as: 5x + 105 = 180; Subtract "105" from EACH side; to get:
_____________________________________
5x = 75 ; Now, divide each side of the equation by "5";
to get: x = 15.
_____________________________________________
Now, we want to know: m∡BCD; which equals:
_____________________________________________
9x - 5 ; let us substitute "15" for "x"; and solve:
______________________
9x - 5 = 9*(15) - 5 = 135 - 5 = 130.
_____________________________
The answer: m∡BCD = 130°
________________________