Hello!if you mean 3.28 divided by 9.84 then the answer is 0.33333333 and so on
Answer:
15
Step-by-step explanation: trust me i have had the before
To find the 20th term in this sequence, we can simply keep on adding the common difference all the way until we get up to the 20th term.
The common difference is the number that we are adding or subtracting to reach the next term in the sequence.
Notice that the difference between 15 and 12 is 3.
In other words, 12 + 3 = 15.
That 3 that we are adding is our common difference.
So we know that our first term is 12.
Now we can continue the sequence.
12 ⇒ <em>1st term</em>
15 ⇒ <em>2nd term</em>
18 ⇒ <em>3rd term</em>
21 ⇒ <em>4th term</em>
24 ⇒ <em>5th term</em>
27 ⇒ <em>6th term</em>
30 ⇒ <em>7th term</em>
33 ⇒ <em>8th term</em>
36 ⇒ <em>9th term</em>
39 ⇒ <em>10th term</em>
42 ⇒ <em>11th term</em>
45 ⇒ <em>12th term</em>
48 ⇒ <em>13th term</em>
51 ⇒ <em>14th term</em>
54 ⇒ <em>15th term</em>
57 ⇒ <em>16th term</em>
60 ⇒ <em>17th term</em>
63 ⇒ <em>18th term</em>
66 ⇒ <em>19th term</em>
<u>69 ⇒ </u><u><em>20th term</em></u>
<u><em></em></u>
This means that the 20th term of this arithemtic sequence is 69.
Answer:
(a <em><u>s</u></em><em><u>q</u></em><em><u>u</u></em><em><u>a</u></em><em><u>r</u></em><em><u>e</u></em><em><u> </u></em><em><u>+</u></em><em><u>7</u></em><em><u>a</u></em><em><u>+</u></em><em><u>1</u></em><em><u>2</u></em><em><u>)</u></em><em><u> </u></em><em><u>÷</u></em><em><u>(</u></em><em><u>a</u></em><em><u>+</u></em><em><u>3</u></em><em><u>)</u></em>
Answer:
(a) The solution to the differential equation is x = A_0Coswt + Ce^(-kx)
(b) The initial condition t > 0 will not make much of a difference.
Step-by-step explanation:
Given the differential equation
dx/dt= −k(x − A); t > 0, A = A_0Coswt
(a) To solve the differential equation, first separate the variables.
dx/(x - A) = -kdt
Integrating both sides, we have
ln(x - A) = -kt + c
x - A = Ce^(-kt) (Where C = ce^(-kt))
x = A + Ce^(-kx)
Now, we put A = A_0Coswt
x = A_0Coswt + Ce^(-kx) (Where C is constant.)
And we have the solution.
(b) Since temperature t ≠ 0, the initial condition t > 0 will not make much of a difference because, Cos(wt) = Cos(-wt).
It is not any different from when t < 0.