You are trying to convert mass to volume. That ain't working
Answer:
Lens at a distance = 7.5 cm
Lens at a distance = 6.86 cm (Approx)
Explanation:
Given:
Object distance u = 12 cm
a) Focal length = 20 cm
b) Focal length = 16 cm
Computation:
a. 1/v = 1/u + 1/f
1/v = 1/20 + 1/12
v = 7.5 cm
Lens at a distance = 7.5 cm
b. 1/v = 1/u + 1/f
1/v = 1/16 + 1/12
v = 6.86 cm (Approx)
Lens at a distance = 6.86 cm (Approx)
Answer:
(a) 37.5 kg
(b) 4
Explanation:
Force, F = 150 N
kinetic friction coefficient = 0.15
(a) acceleration, a = 2.53 m/s^2
According to the newton's second law
Net force = mass x acceleration
F - friction force = m a
150 - 0.15 x m g = m a
150 = m (2.53 + 0.15 x 9.8)
m = 37.5 kg
(b) As the block moves with the constant speed so the applied force becomes the friction force.

A shorter electromagnetic wave is hotter.
A shorter electromagnetic wave produce heat hotter than ultraviolet rays. Because it produces both gamma rays and ultraviolet rays that makes it hotter that the heat of the sun.