First law of motion<span>- sometimes referred to as the </span>law<span> of inertia. An object at rest stays at rest and an object in </span>motion<span> stays in </span>motion<span> with the same speed and in the same direction unless acted upon by an unbalanced force.</span>
Answer:
349 m
Explanation:
Parameters given:
Mass of climber, m = 92.6 kg
Amount of food calories = 735
1 food calorie = 103 calories
735 food calories = 75705 calories
1 joule is equal to 0.239 calories. Therefore, 75705 calories will be 316749.72 joules.
Hence, this is the amount of work the climber must do work off the food he ate.
Work done is given as:
W = Force * distance
W = m * g * h
h = W/(m * g)
h = 316749.72/(92.6 * 9.8)
h = 349 m
Answer and Explanation: No, the explanation is not plausible. The puck sliding on the ice is an example of the <u>Principle</u> <u>of</u> <u>Conservation</u> <u>of</u> <u>Energy</u>, which can be enunciated as "total energy of a system is constant. It can be changed or transferred but the total is always the same".
When a player hit the pluck, it starts to move, gaining kinetic energy (K). As it goes up a ramp, kinetic energy decreases and potential energy (P) increases until it reaches its maximum. When potential energy is maximum, kinetic energy is zero and vice-versa.
So, at the beginning of the movement the puck only has kinetic energy. At the end, it gains potential energy until its maximum.
The representation is as followed:



As we noticed, mass of the object can be cancelled from the equation, making height be:

So, the height the puck reaches depends on velocity and acceleration due to gravity, not mass of the puck.