This is a nuclear fission reaction, in which a larger nucleus is bombarded with a neutron to make it break down into two smaller nuclei and release energy.
Answer:
A
Explanation:
A. The pencil is on the table in broad daylight
We are given information:
m = 0.0450 kg
Δv = 25.2 m/s
Δt = 1.95 ms = 0.00195s
To find force we use formula:
F = m * a
a is acceleration. To find it we use formula:
a = Δv / Δt
a = 25.2 / 0.00195
a = 12923.1 m/s^2
Now we can find force:
F = 0.0450 * 12923.1
F = 581.5 N
To check the effect of the ball's weight on this movement we need to calculate it and then compare it to this force.
W = m * g
W = 0.0450 * 9.81
W = 0.44145 N
We can see that weight is much smaller than the applied force so it's influence in negligible.
Answer:
46.4 s
Explanation:
5 minutes = 60 * 5 = 300 seconds
Let g = 9.8 m/s2. And be the slope of the road, s be the distance of the road, a be the acceleration generated by Rob, 3a/4 is the acceleration generated by Jim . Both of their motions are subjected to parallel component of the gravitational acceleration
Rob equation of motion can be modeled as s = a_Rt_R^2/2 = a300^2/2 = 45000a[/tex]
Jim equation of motion is
As both of them cover the same distance
So Jim should start 346.4 – 300 = 46.4 seconds earlier than Rob in other to reach the end at the same time
Answer:
Gravity
Explanation:
That's easy because gravity is the only thing that can pull us down that hard at that fast without anything helping it.