The mutual forces of gravity between the Earth and an object on or near
its surface are (<em>mass of the object</em>) x (<em>acceleration of gravity on Earth</em>).
These two forces are equal, and we call their strength the "weight" of
the object. It's the number shown on the scale as long as nobody has
their thumb on the scale. In this problem, the force is 45N . (That's
about 10.12 pounds.)
The acceleration of gravity on Earth is about 9.8 meters per second² .
So 45N = (mass in kilograms) x (9.8 meters per second²)
Divide each side by 9.8 : Mass = 45/9.8 = <u>4.59 kilograms</u> (rounded)
Answer:
Therefore the answer is the precision in the speed DECREASES
Explanation:
In quantum mechanics, we have the uncertainty principle that establishes that when the accuracy of the position increases the accuracy the speed decreases, being related by the expression
Δx Δv ≥ h'/ 2
h' = h/2π
Therefore the answer is the precision in the speed DECREASES
Answer:
2.26l
Explanation:
From the general gas equation:
P1V1/T1 = P2V2/T2
Since pressure remained constant we can say:
V1/T1 = V2/T2
so to convert to kelvin add 273 to both temperature values then we can say:
1 m^3= 1000 L
2l=0.002m^3
Then;
0.002/308=V/348
V=(0.002/308)348
Final volume=0.002259m^3
=2.6l(1 decimal place)
Answer:
0.7515875 eV

Explanation:
f = Maximum frequency = 
h = Planck's constant = 
W = Work function = 2.52 eV
Converting to Joules

Maximum photon energy is given by

Maximum Kinetic energy is given by

Converting to eV

The maximum kinetic energy of electrons ejected from this surface is 0.7515875 eV

The range of frequencies for which no electrons are ejected is

a fixed luminous point in the night sky which is a large, remote incandescent body like the sun. or a conventional or stylized representation of a star, typically one having five or more points.