The first one is right and so is eight you have to add them together to see if they go together if they dont add what is missing
Explanation:
It is known that molarity is the number of moles present in a liter of solution.
Mathematically, Molarity = 
Hence, calculate the molarity of given solution as follows.
Molarity of citric acid = 
= 
= 0.173 M
As citric acid is a triprotic acid so, upon dissociation it gives three hydrogen ions.
Normality = Molarity × no. of hydrogen or hydroxide ions
= 0.173 × 3
= 0.519 N
Thus, we can conclude that molarity of given solution is 0.173 and its normality is 0.519 N.
I would say G sorry if it’s not right
Answer:
10.28 mol
Explanation:
S + 2O = SO2
(atm x L) ÷ (0.0821 x K)
(3.45 x 45.6) ÷ (0.0821 x 373)
=5.13726
Then round it to significant figures
=5.14
5.14 mol SO2 x (2 mol O ÷ 1 mol SO2)
=10.28 mol O
Answer:
c. decarboxylation of an a-keto acid.
Explanation:
Decarboxylation refers to the removal of the carboxyl group from a carboxylic acid and thus releasing carbon dioxide. Decarboxylases are enzymes that speed up the removal of the carboxyl group from acids. These reactants could be amino acids, alpha-keto acids, and beta-keto acids. Biotin is known to catalyze the decarboxylation of malonyl CoA to acetyl CoA during fatty acid synthesis.
Malonyl CoA is converted to acetyl CoA after decarboxylation assisted by biotin also known as Vitamin H. Alpha keto acids are involved in fatty acids synthesis and Malonyl CoA is an alpha-keto acid because the keto group is located in the first carbon near the carboxylic acid group. Keto acids have both a carboxyl group and a ketone group.