Answer:
- 1 mole of carbon disulfide gas at 273 K and 40 L
- 1 mol of chlorine gas at 273 K and 40 L
- 1 mol of neon gas at 273 K and 40 L
- 1 mol of neon gas at 273 K and 20 L
- 1/2 mol of neon gas at 273 K and 20 L
- 1/2 mol of neon gas at 100 K and 20 L
- 1/2 mol of liquid neon at 100 K
Explanation:
Entropy is the measure of disorder or randomness in a closed system. Its an extensive property of a thermodynamic system
The following points must be considered when ranking the systems according to their entropy:
- The entropy of gases are highest than liquids or solid. And entropy of liquid is higher than solid. That is because gas has more microstate thus have the highest entropy.
- Entropies of large complicated molecules are greater than those of smaller, simpler molecules. Because larger molecules have more disorder because of the greater number of ways they can be move around in three dimensional space.
- highest temperature and highest volume will lead to greatest entropy
- 1 mole of any substance will have greater entropy than 1/2 mole of that same substance
Atomic number should be the answer
Answer:
remove product
Explanation:
Removing the product will always shift the equilibrium to the right. This is based on the Le Chatelier's principle which states that "if any of the conditions of a system in equilibrium is changed, the system will adjust itself in order to annul the effect of the change".
- If a system at equilibrium is disturbed, by changing the concentration of one of the substances all the concentrations will change until a new equilibrium point is reached.
- Removing the product will increase the concentration of the species on the left hand side, the equilibrium will shift to the right.
Answer: A sea of electrons
Explanation:
The radioactive decay obeys first order kinetics
the rate law expression for radioactive decay is
![ln\frac{[A_{0}]}{[A_{t}]}=kt](https://tex.z-dn.net/?f=ln%5Cfrac%7B%5BA_%7B0%7D%5D%7D%7B%5BA_%7Bt%7D%5D%7D%3Dkt)
Where
A0 = initial concentration
At = concentration after time "t"
t = time
k = rate constant
For first order reaction the relation between rate constant and half life is:

Let us calculate k
k = 0.693 / 72 = 0.009625 years⁻¹
Given
At = 0.25 A0

time = 144 years
So after 144 years the sample contains 25% parent isotope and 75% daughter isotopes**
Simply two half lives