Answer:
The answer is: (a) positive; (b) negative.
Explanation:
The change in enthalpy (ΔH) of a reaction is the amount of energy absorbed or released during a chemical reaction carried out at constant pressure.
a) In an endothermic chemical reaction, heat energy is absorbed by the system from the surrounding. Therefore, the sign of enthalpy change for an endothermic process is positive, ΔH= positive.
b) In an exothermic chemical reaction, heat energy is released by the system into the surrounding. Therefore, the sign of enthalpy change for an exothermic process is negative, ΔH= negative.
Answer:
39.2 g
Explanation:
- 2Ni₂O₃(s) ⟶ 4Ni(s) + 3O₂(g)
First we <u>convert 55.3 grams of Ni₂O₃ into moles of Ni₂O₃</u>, using its<em> molar mass</em>:
- 55.3 g ÷ 165.39 g/mol = 0.334 mol Ni₂O₃
Then we <u>convert 0.334 moles of Ni₂O₃ into moles of Ni</u>, using the <em>stoichiometric coefficients of the balanced reaction</em>:
- 0.334 mol Ni₂O₃ *
= 0.668 mol Ni
Finally we <u>calculate how much do 0.668 Ni moles weigh</u>, using the<em> molar mass of Ni </em>:
- 0.668 mol Ni * 58.69 g/mol = 39.2 g
Balanced Eqn
2
C
2
H
6
+
7
O
2
=
4
C
O
2
+
6
H
2
O
By the Balanced eqn
60g ethane requires 7x32= 224g oxygen
here ethane is in excess.oxygen will be fully consumed
hence
300g oxygen will consume
60
⋅
300
224
=
80.36
g
ethane
leaving (270-80.36)= 189.64 g ethane.
By the Balanced eqn
60g ethane produces 4x44 g CO2
hence amount of CO2 produced =
4
⋅
44
⋅
80.36
60
=
235.72
g
and its no. of moles will be
235.72
44
=5.36 where 44 is the molar mass of Carbon dioxide
hope this helps
Answer:
D
Explanation:
i took the test and got it right :)
Answer: 
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
Thus in the reactants, there are 2 atoms of hydrogen and 2 atoms of iodine .Thus there has to be 2 atoms of hydrogen and 2 atoms of iodine in the product as well. Thus a coefficient of 2 is placed in front of HI.
The balanced chemical reaction is:
