Answer:
t = 0.437 s
Explanation:
The speed of sound is a constant that is worth v = 343 m / s
v = d / t
t = d / v
the time it takes for the sound to reach Clark at d = 150 m is
t = 150/343
t = 0.437 s
This same sound takes much longer to reach you
t₂ = 127 10³/343
t₂ = 370 s
The formula we use
here is:
radial acceleration =
ω^2 * R <span>
110,000 * 9.81 m/s^2 = ω^2 * 0.073 m
<span>ω^2 = 110,000 * 9.81 / 0.073
ω = 3844.76 rad/s </span></span>
<span>and since: ω = 2pi*f --> f = ω/(2pi)</span><span>
f = 3844.76 / (2pi) = 611.91 rps = 611.91 * 60 rpm
<span>= 36,714.77 rpm </span></span>
Answer:
Net force: 20 N to the right
mass of the bag: 20.489 kg
acceleration: 0.976 m/s^2
Explanation:
Since the normal force and the weight are equal in magnitude but opposite in direction, they add up to zero in the vertical direction. In the horizontal direction, the 195 N tension to the right minus the 175 force of friction to the left render a net force towards the right of magnitude:
195 N - 175 N = 20 N
So net force on the bag is 20 N to the right.
The mass of the bag can be found using the value of the weight force: 201 N:
mass = Weight/g = 201 / 9.81 = 20.489 kg
and the acceleration of the bag can be found as the net force divided by the mass we just found:
acceleration = 20 N / 20.489 kg = 0.976 m/s^2
In a limited government, the power of government to intervene in the exercise of civil liberties is restricted by law, usually in a written constitution. It is a principle of classical liberalism, free market libertarianism, and some tendencies of liberalism and conservatism in the United States
Answer:
a) v = 2.4125 m / s , b) Em_{f} / Em₀ = 0.89
Explanation:
a) This is an inelastic crash problem, the system is made up of the four carriages, so the forces during the crash are internal and the moment is conserved
Initial
p₀ = m v₁ + 3 m v₂
Final
= (4 m) v
p₀ =p_{f}
m (v₁ + 3 v₂) = 4 m v
v = (v₁ +3 v₂) / 4
Let's calculate
v = (3.86 + 3 1.93) / 4
v = 2.4125 m / s
b) the initial mechanical energy is
Em₀ = K₁ + 3 K₂
Em₀ = ½ m v₁² + ½ 3m v₂²
The final mechanical energy
= K
Em_{f} = ½ 4 m v²
The fraction of energy lost is
Em_{f} / Em₀ = ½ 4m v² / ½ m (v₁² +3 v₂²)
Em_{f} / Em₀ = 4 v₂ / (v₁² + 3 v₂²)
Em_{f} / Em₀ = 4 2.4125² / (3.86² + 3 1.93²)
Em_{f} / em₀ = 23.28 / 26.07
Em_{f} / Em₀ = 0.89