Answer:
Work done = -220,000 Joules.
Explanation:
<u>Given the following data;</u>
Mass = 1100kg
Initial velocity = 20m/s
To find workdone, we would calculate the kinetic energy possessed by the car.
Kinetic energy can be defined as an energy possessed by an object or body due to its motion.
Mathematically, kinetic energy is given by the formula;

Where,
- K.E represents kinetic energy measured in Joules.
- M represents mass measured in kilograms.
- V represents velocity measured in metres per seconds square.
Substituting into the equation, we have;
K.E = 220,000J
Therefore, the workdone to bring the car to rest would be -220,000 Joules because the braking force is working to oppose the motion of the car.
26.54 m/s is the magnitude of its velocity just before it strikes the ground
h=100m,v=20m/s,g=9.8m/s
time it takes to reach the ground,
![[t=\sqrt2h/g],[=\sqrt2*100/9.8=4.51s]](https://tex.z-dn.net/?f=%5Bt%3D%5Csqrt2h%2Fg%5D%2C%5B%3D%5Csqrt2%2A100%2F9.8%3D4.51s%5D)
x= 120m
t= 4.52
v= x/t
v= 120/4.52
v= 26.54 m/s
The "speed at which an object changes its location" can be expressed using a vector number called velocity. Consider a person who moves swiftly while taking two steps forward and two steps back while remaining in one location. Velocity is a vector quantity. Therefore, velocity is cognizant of direction. The direction must be taken into account when determining an object's velocity. A speed of 55 mph is not enough information. The direction must be used to appropriately depict the item's velocity. Simply said, the direction of the velocity vector indicates the direction of motion of an object.
To know more about velocity visit : brainly.com/question/16379705
#SPJ9
The Image distance and Magnification of The Image will be 30 cm and 3.
<h3>What is focal length?</h3>
The focal length of the lens, which is often expressed in millimeters, is the distance between the lens and the image sensor when the subject is in focus.
Given data;
Focal length,f=?
Image distance,v=?
Object distance,u= 10 cm
Magnification,m= 2.85
The focal length is half of the radius;
f=R/2
f=30 Cm/2
f= 15 Cm
The mirror equation is found as;

The magnification of the lens is found as;

Hence, the image distance and magnification of The image will be 30 cm and 3.
To learn more about the focal length refer;
brainly.com/question/16188698
#SPJ1
Wow ! This is not simple. At first, it looks like there's not enough information, because we don't know the mass of the cars. But I"m pretty sure it turns out that we don't need to know it.
At the top of the first hill, the car's potential energy is
PE = (mass) x (gravity) x (height) .
At the bottom, the car's kinetic energy is
KE = (1/2) (mass) (speed²) .
You said that the car's speed is 70 m/s at the bottom of the hill,
and you also said that 10% of the energy will be lost on the way
down. So now, here comes the big jump. Put a comment under
my answer if you don't see where I got this equation:
KE = 0.9 PE
(1/2) (mass) (70 m/s)² = (0.9) (mass) (gravity) (height)
Divide each side by (mass):
(0.5) (4900 m²/s²) = (0.9) (9.8 m/s²) (height)
(There goes the mass. As long as the whole thing is 90% efficient,
the solution will be the same for any number of cars, loaded with
any number of passengers.)
Divide each side by (0.9):
(0.5/0.9) (4900 m²/s²) = (9.8 m/s²) (height)
Divide each side by (9.8 m/s²):
Height = (5/9)(4900 m²/s²) / (9.8 m/s²)
= (5 x 4900 m²/s²) / (9 x 9.8 m/s²)
= (24,500 / 88.2) (m²/s²) / (m/s²)
= 277-7/9 meters
(about 911 feet)
For help with this answer, we look to Newton's second law of motion:
Force = (mass) x (acceleration)
Since the question seems to focus on acceleration, let's get
'acceleration' all alone on one side of the equation, so we can
really see what's going on.
Here's the equation again:
Force = (mass) x (acceleration)
Divide each side by 'mass',
and we have: Acceleration = (force) / (mass) .
Now the answer jumps out at us: The rate of acceleration of an object
is determined by the object's mass and by the strength of the net force
acting on the object.