This is a poorly written question.
<span>Out of the choices listed, the first one is the only one that includes
a true statement ... the greater the mass of two objects, the
greater
the gravitational attraction is between them.</span>
-- Newton's law of universal gravitation doesn't "suggest" that. It states it ...
boldly and unequivocally.
-- The law doesn't refer to the "greatness" of the mass of the two objects.
It refers to the product of their masses.
-- It's true that the law of universal gravitation can be massaged and
manipulated to reveal the existence of gravitational planetary orbits.
But there's a lot more to it than simply the masses.
For example ... the gravitational force between two objects is inversely
proportional to
(the distance between the objects)² .
It turns out that IF that exponent were not precisely, exactly 2.000000... ,
then gravitational orbits could not exist.
Given:-
- Time taken by the particle (t) = 6 s
- Average speed (v) = 40 m/s
To Find: Distance (s) travelled by the particle.
We know,
s = vt
where,
- s = Distance travelled,
- v = Speed &
- t = Time taken.
Putting the values,
s = (40 m/s)(6 s)
→ s = 240 m ...(Ans.)
Answer:
0.32 m.
Explanation:
To solve this problem, we must recognise that:
1. At the maximum height, the velocity of the ball is zero.
2. When the velocity of the ball is 2.5 m/s above the ground, it is assumed that the potential energy and kinetic energy of the ball are the same.
With the above information in mind, we shall determine the height of the ball when it has a speed of 2.5 m/s. This can be obtained as follow:
Mass (m) = constant
Acceleration due to gravity (g) = 9.8 m/s²
Velocity (v) = 2.5 m/s
Height (h) =?
PE = KE
Recall:
PE = mgh
KE = ½mv²
Thus,
PE = KE
mgh = ½mv²
Cancel m from both side
gh = ½v²
9.8 × h = ½ × 2.5²
9.8 × h = ½ × 6.25
9.8 × h = 3.125
Divide both side by 9.8
h = 3.125 / 9.8
h = 0.32 m
Thus, the height of the ball when it has a speed of 2.5 m/s is 0.32 m.
Depends on the situation. It could be something like potential energy of a compressed or stretched spring.
Explicacion
m = 65 kg
g = 10 m/s²
r = 0.5 cm (1m / 100 cm) = 0.05 m
A = π r² = π (0.05 m)² = 0.00785 m²
F =W = m g = 65 kg(10 m/s²) = 650 N
P = F/A = 650 N / 0.00785 m² = 82802.54 N/m²