Answer:
the first one is a group 1 and the second one is d all of the above
Explanation:
<span>553 ohms
The Capacitive reactance of a capacitor is dependent upon the frequency. The lower the frequency, the higher the reactance, the higher the frequency, the lower the reactance. The equation is
Xc = 1/(2*pi*f*C)
where
Xc = Reactance in ohms
pi = 3.1415926535.....
f = frequency in hertz.
C = capacitance in farads.
I'm assuming that the voltage and resistor mentioned in the question are for later parts that are not mentioned in this question. Reason is that they have no effect on the reactance, but would have an effect if a question about current draw is made in a later part. With that said, let's calculate the reactance.
The 120 rad/s frequency is better known as 60 Hz.
Substitute known values into the formula.
Xc = 1/(2*pi* 60 * 0.00000480)
Xc = 1/0.001809557
Xc = 552.6213302
Rounding to 3 significant figures gives 553 ohms.</span>
Answer:
C. water is more dense and viscous
Explanation:
Rapid gas exchange can be accomplished more easily in air than in water because water is more dense and viscous.
Gases have the greatest ease of diffusion of their respective particles, as occurs in air, since their molecules have higher speeds and have more distance from each other than liquids.
The molecular diffusion rate in liquids is much less than in gases. The molecules of a liquid are very close (liquids are more dense and viscous) to each other compared to those of a gas, then the gas molecules hits with the molecules of the liquid with more frequency and this causes that the gas moves slower than in other gas (for example in air).