Answer:
It has been learned in this lesson that the area bounded by the line and the axes of a velocity-time graph is equal to the displacement of an object during that particular time period. ... Once calculated, this area represents the displacement of the object.
Explanation:
Answer:
5.38 m/s^2
Explanation:
NET force causing the object to accelerate = 50 -10 = 40 N
Mass of the object = 73 N / 9.81 m/s^2 = 7.44 kg
F = ma
40 = 7.44 * a a = 5.38 m/s^2
The answer is:
V = d/t d = 86 km t = 1.3 hrs
V = 86 km/ 1.3 hrs
V = 66.15 km/ hrs
I hope this helps!!
Let say the point is inside the cylinder
then as per Gauss' law we have

here q = charge inside the gaussian surface.
Now if our point is inside the cylinder then we can say that gaussian surface has charge less than total charge.
we will calculate the charge first which is given as


now using the equation of Gauss law we will have


now we will have

Now if we have a situation that the point lies outside the cylinder
we will calculate the charge first which is given as it is now the total charge of the cylinder


now using the equation of Gauss law we will have


now we will have
The acceleration of the object which moves from an initial step to a full halt given the distance traveled can be calculated through the equation,
d = v² / 2a
where d is distance, v is the velocity, and a is acceleration
Substituting the known values,
180 = (22.2 m/s)² / 2(a)
The value of a is equal to 1.369 m/s²
The force needed for the object to be stopped is equal to the product of the mass and the acceleration.
F = (1300 kg)(1.369 m/s²)
F = 1779.7 N