Complete Question
A parallel-plate capacitor, with air dielectric, is charged by a battery, after which the battery is disconnected. A slab of glass dielectric is then slowly inserted between the plates. As it is being inserted,
A :
a force repels the glass out of the capacitor.
B :
a force attracts the glass into the capacitor.
C :
no force acts on the glass.
D :
a net charge appears on the glass.
E :
the glass makes the plates repel each other.
Answer:
The correct option is B
Explanation:
Generally when the glass dielectric is slowly inserted between the plated,
The positive plate of the capacitor will induce a negative charge on the glass while the negative plate of the capacitor will induce a positive charge on glass which a electric field that posses an electric force that will attract the glass
Answer:
This means that the kinetic energy of second object is 48times that of the first object
Explanation:
Kinetic energy is the energy possessed by a body by virtue of its motion e.g motion of an accelerating car. Mathematically,
Kinetic energy = 1/2mv² where;
m is the mass of the object
v is the velocity of the object
If Object 1 of mass m moves with speed v in the positive direction, its kinetic energy will be expressed as;
K1 = 1/2mv²
For Object 2 of mass 3m moving with speed 4v in the negative x-direction, its kinetic energy can be expressed as;
K2 = 1/2(3m)(4v)²
K2 = 1/2(3m)(16v²)
K2 = (3m)(8v²)
K2 = 24mv²
To compare the kinetic energy of both bodies, we will take the ratio of K2:K1 to have;
K2/K1 = 24mv²/(1/2)mv²
K2/K1 = 24/(1/2)
K2/K1 = 48
K2 = 48K1
This means that the kinetic energy of second object is 48times that of the first object and moving in the negative x direction since the body of mass 3m initially moves in the negative x direction.
I looked up the question and got D- a vacuum
Mass spectrometry.....identifies dyes on nylon
☺☺☺☺
Explanation:
It is given that,
Relativistic Mass of the stone, m₀ = 0.6
Mass, 
Relativistic mass is given by :
.........(1)
Where
c is the speed of light
On rearranging equation (1) we get :



v = 0.61378 c
or
v = 0.6138 c
So, the correct option is (c). Hence, this is the required solution.