Answer:
109.32 N/m
Explanation:
Given that
Mass of the hung object, m = 8 kg
Period of oscillation of object, T = 1.7 s
Force constant, k = ?
Recall that the period of oscillation of a Simple Harmonic Motion is given as
T = 2π √(m/k), where
T = period of oscillation
m = mass of object and
k = force constant if the spring
Since we are looking for the force constant, if we make "k" the subject of the formula, we have
k = 4π²m / T², now we go ahead to substitute our given values from the question
k = (4 * π² * 8) / 1.7²
k = 315.91 / 2.89
k = 109.32 N/m
Therefore, the force constant of the spring is 109.32 N/m
The best and most correct answer among the choices provided by the question is <span>f(t) = −70 cos pi over 6t + 110</span><span>.
</span>
Hope my answer would be a great help for you.
If you have more questions feel free to ask here at Brainl
Potential energy and kinetic energy
To solve the problem it is necessary to apply energy conservation.
By definition we know that kinetic energy is equal to potential energy, therefore
PE = KE

Where,
m = mass
g = gravitaty constat
v = velocity
h = height
Re-arrange to find h,

Replacing with our values


Therefore the correct answer is C.
Answer:
kinetic energy because when the car moves again it will be faster then it was before