Answer:
v(t) = 27 units
Explanation:
The function s(t) represents the position of an object at time t moving along a line such that,
and
We need to find the average velocity of the object over the interval of time [2,6]. The velocity of the object is equal to the total distance divided by time. It is given by :
v(t) = 27 units
So, the average velocity of the object is 27 units. Hence, this is the required solution.
Answer:
Final Length = 30 cm
Explanation:
The relationship between the force applied on a string and its stretching length, within the elastic limit, is given by Hooke's Law:
F = kΔx
where,
F = Force applied
k = spring constant
Δx = change in length of spring
First, we find the spring constant of the spring. For this purpose, we have the following data:
F = 50 N
Δx = change in length = 25 cm - 20 cm = 5 cm = 0.05 m
Therefore,
50 N = k(0.05 m)
k = 50 N/0.05 m
k = 1000 N/m
Now, we find the change in its length for F = 100 N:
100 N = (1000 N/m)Δx
Δx = (100 N)/(1000 N/m)
Δx = 0.1 m = 10 cm
but,
Δx = Final Length - Initial Length
10 cm = Final Length - 20 cm
Final Length = 10 cm + 20 cm
<u>Final Length = 30 cm</u>
Answer:
For sound waves to travel, there is a requirement of medium and density of the medium is considered to be one of the factors on which the speed of sound depends. When the medium is dense, the molecules in the medium are closely packed which means that the sound travels faster.
Explanation:
Answer:
have a component along the direction of motion that remains perpendicular to the direction of motion
Explanation:
In this exercise you are asked to enter which sentence is correct, let's start by writing Newton's second law.
circular movement
F = m a
a = v² / r
F = m v²/R
where the force is perpendicular to the velocity, all the force is used to change the direction of the velocity
in linear motion
F = m a
where the force is parallel to the acceleration of the body, the total force is used to change the modulus of the velocity
the correct answer is: have a component along the direction of motion that remains perpendicular to the direction of motion
We will define the Total mass to calculate the force, so our values are:
Total Mass
The Weight is,
Through the hook's Law we calculate X.
, where x is the lenght of compression and K the Spring constant.
We don't have a K-Spring, but we can assume a random value (or simply let the equation in function of K)
I assume a value of