Answer:
a) Total mass form, density and axis of rotation location are True
b) I = m r²
Explanation:
a) The moment of inertia is the inertia of the rotational movement is defined as
I = ∫ r² dm
Where r is the distance from the pivot point and m the difference in body mass
In general, mass is expressed through density
ρ = m / V
dm = ρ dV
From these two equations we can see that the moment of inertia depends on mass, density and distance
Let's examine the statements, the moment of inertia depends on
- Linear speed False
- Acceleration angular False
- Total mass form True
- density True
- axis of rotation location True
b) we calculate the moment of inertia of a particle
For a particle the mass is at a point whereby the integral is immediate, where the moment of inertia is
I = m r²
<span>D. A burning candle. (chemical energy into energy of heat and light, i.e. thermal and wave)</span>
Answer:
Explanation:
Given
mass of car 
Initial velocity of car
towards east
Time taken to stop 
Force exerted 
change in momentum is given by impulse imparted to the car



negative Sign indicates that impulse is imparted opposite to the direction of motion
magnitude of momentum 
Answer:
The direction of the magnetic field at point Z; Into the screen
Explanation: