1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sophie [7]
3 years ago
6

A boy standing on a bridge above a river throws stone A vertically upward with an initial velocity =15m/s.2 seconds later he dro

ps stone B with initial velocity=0.Both stones reach the river at the same time.
1-how many seconds does it take stone A to reach the river?
2-how high is the bridge?
3-what is the speed of stone A just before it strikes the river
Physics
1 answer:
Anastaziya [24]3 years ago
7 0

I'm not sure if this is correct but it's what I'll do

This is free-fall problem.
Stone A is thrown upward, at the point it falls down to the place where it was thrown, the velocity is -15m/s.

Now I choose the bridge is the origin. From the bridge, stone A and B fall the same distance which means Ya = Yb ( vertical distance )

Ya = Vo(t + 2) + 1/2a(t+2)^2
= -15(t + 2) + 1/2(9.8)(t^2 + 4t + 4)
= -15t - 30 + 4.5(t^2 + 4t + 4)
= -15t - 30 + 4.5t^2 + 18t + 18
= 4.5t^2 +3t - 12

Yb = Vo(t) + 1/2a(t)^2
= 0 + 4.5t^2

4.5t^2 = 4.5t^2 +3t - 12
0 = 3t - 12
4 = t

Time for Stone B is 4s
Time for Stone A is 6s

You might be interested in
What is the number of waves that pass a fixed ping in a given amount of time?
Viktor [21]
The number of waves that pass a fixed point in a given amount of time is wave frequency. Wave frequency can be measured by counting the number of crests (high points) of waves that pass the fixed point in 1 second or some other time period. The higher the number is, the greater the frequency of the waves. :)
7 0
3 years ago
A certain wave has a wavelength of 35 meters and a frequency of 4.0hz. What is the speed of the wave
defon
The speed of the wave is 140
3 0
3 years ago
Mr Johnson launches an arrow horizontally at a rate of 40m/s off of a 78.4 m cliff towards the south, how much time does it take
vazorg [7]

Answer:c

Explanation:

3 0
3 years ago
In hydrogen, the transition from level 2 to level 1 has a rest wavelength of 121.6 nm.1).Find the speed for a star in which this
soldier1979 [14.2K]

Answer:

1). v = - 2960526m/s

2). Toward us

3). v = - 493421m/s

4). Toward us

5). v = 1480263m/s

6).  Away from us

7). v = 3207236m/s

8). Away from us

Explanation:

Spectral lines will be shifted to the blue part of the spectrum if the source of the observed light is moving toward the observer, or to the red part of the spectrum when it is moving away from the observer (that is known as the Doppler effect).

The wavelength at rest is 121.6 nm (\lambda_{0} = 121.6nm)

Redshift: \lambda_{measured} > \lambda_{0}

Blueshift: \lambda_{measured} < \lambda_{0}

Then, for this particular case it is gotten:

Star 1: \lambda_{measured} = 120.4nm

Star 2: \lambda_{measured} = 121.4nm

Star 3: \lambda_{measured} = 122.2nm

Star 4: \lambda_{measured} = 122.9nm

Star 1:

Blueshift: 120.4nm < 121.6nm

Toward us

Star 2:

Blueshift: 121.4nm < 121.6nm

Toward us

Star 3:

Redshift: 122.2nm > 121.6nm

Away from us

Star 4:

Redshift: 122.9nm > 121.6nm

Away from us

Due to that shift the velocity of the star can be determine by means of Doppler velocity.

v = c\frac{\Delta \lambda}{\lambda_{0}}  (1)

Where \Delta \lambda is the wavelength shift, \lambda_{0} is the wavelength at rest, v is the velocity of the source and c is the speed of light.

v = c(\frac{\lambda_{measured}- \lambda_{0}}{\lambda_{0}}) (2)

<em>Case for star 1 \lambda_{measured} = 120.4 nm:</em>

<em></em>

v = (3x10^{8}m/s)(\frac{120.4nm-121.6nm}{121.6nm})

v = - 2960526m/s

Notice that the negative velocity means that is approaching to the observer.

<em>Case for star 2 \lambda_{measured} = 121.4 nm:</em>

v = (3x10^{8}m/s)(\frac{121.4nm-121.6nm}{121.6nm})

v = - 493421m/s

<em>Case for star 3 \lambda_{measured} = 122.2 nm:</em>

v = (3x10^{8}m/s)(\frac{122.2nm-121.6nm}{121.6nm})

v = 1480263m/s

<em>Case for star 4 \lambda_{measured} = 122.9 nm:</em>

v = (3x10^{8}m/s)(\frac{122.9nm-121.6nm}{121.6nm})

v = 3207236m/s

4 0
4 years ago
Waves in a fish bowl jostled by the Thingamajigger move to the sides at an average velocity of 0.50 m/s. If they occur once ever
Colt1911 [192]

Answer:

0.125 m

Explanation:

In this problem, we have:

v = 0.50 m/s is the average velocity of the wave

T = 0.25 s is the period of the wave

We can find the frequency of the wave, which is equal to the reciprocal of the period:

f=\frac{1}{T}=\frac{1}{0.25 s}=4 Hz

The problem is asking us to find the distance between two crests of the wave: this is equivalent to the wavelength. The wavelength is related to the average velocity and the frequency by the formula:

\lambda=\frac{v}{f}

Substituting the numerical values, we find

\lambda=\frac{0.5 m/s}{4 Hz}=0.125 m

4 0
3 years ago
Other questions:
  • To calculate the velocity of an object the of the position vs time graph should be calculated
    12·2 answers
  • Trevor places a mass on a spring. When he releases it, the mass and spring move in simple harmonic motion.
    9·2 answers
  • What are the requirement for a valid hypothesis ?
    14·1 answer
  • How much heat is needed to melt 13.74 kg of silver that is initially at 20°C?
    15·1 answer
  • What force is needed to accelerate a 2000kg car to 15m/S2
    12·1 answer
  • You notice that heat is released during a chemical reaction. This reaction is a(n) _______ reaction. endothermic heat hot exothe
    11·1 answer
  • How many bonds can a carbon atom form
    11·2 answers
  • Help pls .. Which image shows an example of the strong nuclear force in action?
    12·2 answers
  • Levers pivot on the<br> A. fulcrum<br> B. resistance arm<br> C. effort arm<br> D.moon
    9·1 answer
  • what evidence would you expect to find on the moon if it had been subjected to plate tectonics? (select all that apply.)
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!