Answer : The value of change in entropy for freezing process is, -18.07 J/mol.K
Explanation :
Formula used :

where,
= change in entropy
= change in enthalpy of fusion = 3.17 kJ/mol
As we know that:

= freezing point temperature = 
Now put all the given values in the above formula, we get:



Therefore, the value of change in entropy for freezing process is, -18.07 J/mol.K
1 property
2 procedure
Results
I think it’s either 1 or 2 !!
Q = mcΔT = (4.00 g)(0.129 J/g•°C)(40.85 °C - 0.85 °C)
Q = 20.6 J of energy was involved (more specifically, 20.6 J of heat energy was absorbed from the surroundings by the sample of solid gold).
Answer:
The fraction of water body necessary to keep the temperature constant is 0,0051.
Explanation:
Heat:
Q= heat (unknown)
m= mass (unknown)
Ce= especific heat (1 cal/g*°C)
ΔT= variation of temperature (2.75 °C)
Latent heat:
ΔE= latent heat
m= mass (unknown)
∝= mass fraction (unknown)
ΔHvap= enthalpy of vaporization (539.4 cal/g)
Since Q and E are equal, we can match both equations:

Mass fraction is:


∝=0,0051