The reaction equation is:
<span>2CuO(s) + C(s) </span>→ <span>2Cu(s) + CO</span>₂<span>(g)
First, we determine the number of grams present in one ton of copper oxide. This is:
1 ton = 9.09 x 10</span>⁵ g
We convert this into moles by dividing by the molecular mass of copper oxide, which is:
9.09 x 10⁵ / 79.5 = 11,434 moles
Each mole of carbon reduces two moles of copper oxide, so the moles of carbon required are:
11,434 / 2 = 5,717 moles of Carbon required
The mass of carbon is then:
5,717 x 12 = 68,604 grams
The mass of coke is:
68,604 / 0.95 = 72,214 g
The mass of coke required is 7.22 x 10⁴ grams
Mole - one of the most important concepts in chemistry - is a kind of link to go from the microworld of atoms and molecules in a normal macrocosm grams and kilograms.
In chemistry often have to consider large numbers of atoms and molecules. For fast and efficient calculation made using the weighing method. But it is necessary to know the weight of individual atoms and molecules. In order to identify the molecular weight must be added the weight of all atoms in the compound.
Let suppose the Gas is acting Ideally, Then According to Ideal Gas Equation,
P V = n R T
Solving for P,
P = n R T / V ----- (1)
Data Given;
Moles = n = 1.20 mol
Volume = V = 4 L
Temperature = T = 30 + 273 = 303 K
Gas Constant = R = 0.08206 atm.L.mol⁻¹.K⁻¹
Putting Values in Eq.1,
P = (1.20 mol × 0.08206 atm.L.mol⁻¹.K⁻¹ × 303 K) ÷ 4 L
P = 7.45 atm
Below are the choices:
a)0.2168 atm
<span>b)4.613 atm </span>
<span>c)34.60 atm </span>
<span>d467.4 atm
</span>
1 atm = 760mmHg : Therefore:
<span>3,506mmHg = 3,506/760 = 4.613 atm
</span>B is correct answer.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.