I think about 67 students because if you divide 570 by the amount each person needs you get 67.0588235294 so you have to round down
Answer:
The doo doo man said the answer is b kids now listen to the doodoo man XD im just kidding its c dont pick b
Explanation:
(random guy): Bro i got the answer right thx brainly. (Brainly): why thank you my good sir im here to help
Answer:
![[N_2]=0.0866M](https://tex.z-dn.net/?f=%5BN_2%5D%3D0.0866M)
Explanation:
Hello there!
In this case, in agreement to the chemical reaction, it is possible for us to figure out the equilibrium concentration of the N2 product, via an ICE table plugged in the equilibrium expression:
![Kc=\frac{[N_2][O_2]}{[NO]^2}\\\\2.4x10^3=\frac{x*x}{(0.175-2x)^2}](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BN_2%5D%5BO_2%5D%7D%7B%5BNO%5D%5E2%7D%5C%5C%5C%5C2.4x10%5E3%3D%5Cfrac%7Bx%2Ax%7D%7B%280.175-2x%29%5E2%7D)
In such a way, when solving for x via quadratic equation or just a solver, it is possible to obtain:

In such a way, since the root 0.0884 M produce a negative concentration of NO (0.175-2*0.0884=-0.0018M), we infer that the correct root is 0.0866 M; therefore, the concentration of N2 at equilibrium is equal to x:
![[N_2]=x=0.0866M](https://tex.z-dn.net/?f=%5BN_2%5D%3Dx%3D0.0866M)
Best regards!