Use the elimination process
Answer:
0.0143
Step-by-step explanation:
In this question, we are asked to use the binomial distribution to calculate the probability that 10 or fewer passengers from a sample of MIT data project sample were on American airline flights.
We proceed as follows;
The probability that a passenger was an American flight is 15.5%= 15.55/100 = 0.155
Let’s call this probability p
The probability that he/she isn’t on the flight, let’s call this q
q =1 - p= 0.845
Sample size, n = 155
P(X < A) = P(Z < (A - mean)/standard deviation)
Mean = np
= 125 x 0.155
= 19.375
Standard deviation = √npq
= √ (125 x 0.155x 0.845)
= 4.0462
P(10 or fewer passengers were on American Airline flights) = P(X \leq 10)
= P(Z < (10.5 - 19.375)/4.0462)
= P(Z < -2.19)
= 0.0143
Answer:
The answer is the second answer choice
Step-by-step explanation:
You do the implcit differentation, then solve for y' and check where this is defined.
In your case: Differentiate implicitly: 2xy + x²y' - y² - x*2yy' = 0
Solve for y': y'(x²-2xy) +2xy - y² = 0
y' = (2xy-y²) / (x²-2xy)
Check where defined: y' is not defined if the denominator becomes zero, i.e.
x² - 2xy = 0 x(x - 2y) = 0
This has formal solutions x=0 and y=x/2. Now we check whether these values are possible for the initially given definition of y:
0^2*y - 0*y^2 =? 4 0 =? 4
This is impossible, hence the function is not defined for 0, and we can disregard this.
x^2*(x/2) - x(x/2)^2 =? 4 x^3/2 - x^3/4 = 4 x^3/4 = 4 x^3=16 x^3 = 16 x = cubicroot(16)
This is a possible value for y, so we have a point where y is defined, but not y'.
The solution to all of it is hence D - { cubicroot(16) }, where D is the domain of y (which nobody has asked for in this example :-).
(Actually, the check whether 0 is in D is superfluous: If you write as solution D - { 0, cubicroot(16) }, this is also correct - only it so happens that 0 is not in D, so the set difference cannot take it out of there ...).
If someone asks for that D, you have to solve the definition for y and find that domain - I don't know of any [general] way to find the domain without solving for the explicit function).