Momentum of a body is calculated by multiplying the mass of a moving body with its velocity. When a body is at rest it has zero momentum since the velocity is also zero.
In this case the momentum of the canoe will be;
38 kg × 2.2 m/s = 83.6 kgm/s
Therefore, the correct answer is 83.6 kg m/s
<u>Question:</u>
You are working on an experiment involving a very strong permanent magnet, and your data suggests that your magnet's field suddenly decreased during some interval in time. Such a decrease could have been caused by the magnet
A. Having overheated substantially
B. Being hit hard
C. Both A and B
D. Being grounded out
<h3><u>Answer:</u></h3>
A decrease in magnetic field of the permanent magnet have been caused by the magnet having overheated substantially or sharp impacts by being hit hard.
Option c
<h3><u>Explanation: </u></h3>
Permanent magnets are ferromagnetic materials with its magnetic domains aligned and grouped together in the same direction. These atomic domains maintain their directionality and hence a permanent magnet provides persistently strong magnetic fields without quick weakening. Some factors may lead to demagnetization or else a consistent reduction in magnetic strength.
Overheating a magnetic material realigns the magnetic domain regions and affects its directionality. When it reaches to a temperature defined as Curie temperature, varying with each material; the substance is no more a magnet due to complete randomness in the domain structure. As the temperature decreases and approaches the room temperature, magnetic field appears but is less in strength. Sudden impacts due to hitting may lead to random realignment of magnetic domains and thus decrease its magnetic strength.
Answer:
2683.3N
Explanation:
According to coulombs law which states that "the force of attraction existing between two charge q1 and q2 is directly proportional to the product of the charges and inversely proportional to the square of the distance (d) between them. Mathematically |F|= k|q1| |q2| /d² where;
F is the force of attraction between the charges
q1 and q2 are the charges
d is the distance between them
k is the coulombs constant
Given |q1|= 38.9 × 10^-6C and |q2| = 27.6399×10^-6C d = 6cm = 0.06m
k = 8.98755 × 109 Nm² /C²
Substituting the given data's in the equation we have;
|F| = 8.98755 × 10^9×38.9×10^-6×27.6399×10^-6/0.06²
|F| = 9.66/0.06²
|F| = 9.66/0.0036
|F| = 2683.3N
The magnitude of the force will be 2683.3N
Note that the modulus of the charges changes negative value of q2 to positive value. The opposite signs of the charges doesn't affect the final calculation, it only tells the force of attraction or repulsion between the charges. Since they are unlike charges, they will attract each other in the field.
Answer:
14.4 m/s
Explanation:
mass of Anna (Ma) = 68 kg
speed of Anna (Va) = 17 m/s
mass of SandraDay (Ms) = 76 kg
speed of SandraDay (Vs) = 12 m/s
We can find their speed (V) immediately after collision from the conservation of momentum where
(Ma x Va) + (Ms + Vs) = (Ma + Ms) x V
where V = speed immediately after collision
(68 x 17) + (76 + 12) = (68 + 76) x V
2068 = 144 V
V = 2068 / 144 = 14.4 m/s
The new acceleration of gravity is D) 1/16 g
Explanation:
The magnitude of the acceleration of gravity in the gravitational field of a planet is given by

where
G is the gravitational constant
M is the mass of the planet
r is the distance of the object from the centre of the planet
In this problem, the acceleration of gravity g on the surface of the planet (when r=R) is

Then the object is moved to a distance of
r' = 4R
Substituting into the original equation, we can find what is the new acceleration of gravity:

So, the acceleration of gravity has decreased by a factor 16.
Learn more about gravity:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly