Answer:
Space probes are made to conduct science experiments. They do not have people on them. Space probes have helped scientists get information about our solar system. Most probes are not designed to return to Earth. Some have landed on other planets! Others have flown past the planets and taken pictures of them for scientists to see. There are even some space probes that go into orbit around other planets and study them for a long time. The information they gather is used to help us understand the weather and other changes which happen on planets other than the Earth. This information is important in helping to plan other space missions such as ones to Mars and to Saturn.
Explanation:
Answer:
R₂ / R₁ = D / L
Explanation:
The resistance of a metal is
R = ρ L / A
Where ρ is the resistivity of aluminum, L is the length of the resistance and A its cross section
We apply this formal to both configurations
Small face measurements (W W)
The length is
L = W
Area
A = W W = W²
R₁ = ρ W / W² = ρ / W
Large face measurements (D L)
Length L = D= 2W
Area A = W L
R₂ = ρ D / WL = ρ 2W / W L = 2 ρ/L
The relationship is
R₂ / R₁ = 2W²/L
No person shall be judged by their financial status in the process of applying for a job or position of power in the government.
Gravity? Im almost sure thats it
Answer:
It's impossible for an ideal heat engine to have non-zero power.
Explanation:
Option A is incomplete and so it's possible.
Option B is possible
Option D is related to the first lae and has nothing to do with the second law.
Hence, the correct option is C.
The ideal engine follows a reversible cycle albeit an infinitely slow one. If the work is being done at this infinitely slow rate, the power of such an engine is zero.
We can also stat the second law of thermodynamics in this manner;
It is impossible to construct a cyclical heat engine whose sole effect is the continuous transfer of heat energy from a colder object to a hotter one.
This statement is known as second form or Clausius statement of the second law.
Thus, it is possible to construct a machine in which a heat flow from a colder to a hotter object is accompanied by another process, such as work input.