Answer:
160N/m
Explanation:
According to Hooke's law which states that the extension of an elastic material is directly proportional to the applied force provided that the elastic limit is not exceeded. Mathematically,
F = ke where
F is the applied force
k is the spring constant
e is the extension
From the formula k = F/e
Since the body accelerates when the block is released, F = ma according to Newton's second law of motion.
The spring constant k = ma/e where
m is the mass of the block = 0.4kg
a is the acceleration = 8.0m/s²
e is the extension of the spring = 2.0cm = 0.02m
K = 0.4×8/0.02
K = 3.2/0.02
K = 160N/m
The spring constant of the spring is therefore 160N/m
Helium has only 2 electrons in it's valence shell
So, option D is your answer.
Hope this helps!
The equation of motion of a pendulum is:

where
it its length and
is the gravitational acceleration. Notice that the mass is absent from the equation! This is quite hard to solve, but for <em>small</em> angles (
), we can use:

Additionally, let us define:

We can now write:

The solution to this differential equation is:

where
and
are constants to be determined using the initial conditions. Notice that they will not have any influence on the period, since it is given simply by:

This justifies that the period depends only on the pendulum's length.