To solve this problem it is necessary to apply the concepts related to frequency as a function of speed and wavelength as well as the kinematic equations of simple harmonic motion
From the definition we know that the frequency can be expressed as

Where,


Therefore the frequency would be given as


The frequency is directly proportional to the angular velocity therefore



Now the maximum speed from the simple harmonic movement is given by

Where
A = Amplitude
Then replacing,


Therefore the maximum speed of a point on the string is 3.59m/s
Answer: Impulse = 20 Ns
Explanation:
Impulse is the product of force and time
Also impulse = momentum
Where momentum is the product of mass and velocity.
Given that
M = 2kg
V = 10 m/s
Impulse = MV = 2 × 10 = 20 Ns
Answer: The answer is D all of these sorry if i am wrong
Explanation:
Answer:
R = 0.992 Ω
Explanation:
En esta pregunta, dada la información que contiene, debemos calcular la resistencia de la varilla de grafito.
Matemáticamente,
Resistencia = (resistividad * longitud) / Área De la pregunta;
Resistividad = 3,5 * 10 ^ -5 Ωm
longitud = 170 cm = 1,7 m
Área = 60 mm ^ 2 = 60/1000000 = 6 * 10 ^ -5 m ^ 2
Conectando estos valores a la ecuación anterior, tenemos;
Resistencia = (3.5 * 10 ^ -5 * 1.7) / (6 * 10 ^ -5) =
(3.5 * 1.7) / 6 = 0.992 Ω
I wouldn't be 1000 but I have a feeling your best bet will be B