Answer:
g ≈ 7.4 m/s²
Explanation:
The acceleration due to gravity on planet XX is ...
g = GM/r² = (6.67·10^-11 × 4·10^22)/(6·10^5)^2
g ≈ 7.4 m/s²
Definition: Momentum = (mass) x (speed)
OK. Here we go.
Watch closely:
Divide each side
by 'mass' : <span>Momentum / mass = Speed </span>
Did you follow that ?
For the answer to the question above asking to d<span>etermine the density of the proton.
</span>Density is mass over volume.
The volume of a sphere is 4πr³/3. r is half the diameter.
So the density would be 2.3×10¹⁷ kg/m³.
I hope my answer helped you. Feel free to ask more questions. Have a nice day!
Answer:
451.13 J/kg.°C
Explanation:
Applying,
Q = cm(t₂-t₁)............... Equation 1
Where Q = Heat, c = specific heat capacity of iron, m = mass of iron, t₂= Final temperature, t₁ = initial temperature.
Make c the subject of the equation
c = Q/m(t₂-t₁).............. Equation 2
From the question,
Given: Q = 1500 J, m = 133 g = 0.113 kg, t₁ = 20 °C, t₂ = 45 °C
Substitute these values into equation 2
c = 1500/[0.133(45-20)]
c = 1500/(0.133×25)
c = 1500/3.325
c = 451.13 J/kg.°C
D, 0.140 liters! Hang on a sec and I'll show you a trick I use.