Complete Question
The complete question is shown on the first uploaded image
Answer:
Explanation:
From he question we are told that
The first mass is 
The second mass is 
From the question we can see that at equilibrium the moment about the point where the string holding the bar (where
are hanged ) is attached is zero
Therefore we can say that

Making x the subject of the formula



Looking at the diagram we can see that the tension T on the string holding the bar where
are hanged is as a result of the masses (
)
Also at equilibrium the moment about the point where the string holding the bar (where (
) and
are hanged ) is attached is zero
So basically


Making
subject


Answer:
Yes, there is such a way.
Explanation:
If currents flow in the same direction in two or more long parallel wires, there will be an attractive force between the wires. If the current flows in different directions, there will be a repulsive force between the wires. In this case, these three parallel wires, can be be made to carry current in the same direction, creating an attractive force between all three wires.
Note that it is not possible to have at the least one of them carry current in the opposite direction and still have an attractive current between them.
Answer:
The capillary rise of the glycerin is most nearly 
Explanation:
From the question we are told that
The diameter of the glass tube is 
The density of glycerin is 
The surface tension of the glycerin is 
The capillary rise of the glycerin is mathematically represented as

substituting value


Therefore the height of the glass tube the glycerin was able to cover is
Resultant force is basically the force left after everything is added.
if a ball is being pushed one one side with 180N, and being pushed on teh opposite side with 84N (I added friction and air resistance since they're acting on the same side), then the resultant force would be:
180N - 84N =<u> 96N</u> (you can determine whether it's positive or negative based on the direction of the vector)