Answer:
i) 0.7
ii) 1.39
iii) 0.6
Next time, when compiling a Physics question, ensure you put the unit of each measurement.
Explanation:
i) T = time of flight = 
where u = speed = 4, A = 60 and g = acceleration due to gravity = 10 (It is a constant);
Subsituting the values, we have: T =
= 0.7
ii) distance travel = Range = R = 
where u = speed = 4, A = 60 and g = acceleration due to gravity = 10 (It is a constant);
Subsituting values, we have: R =
= 1.39
iii) Maximum Height = H = 
where u = speed = 4, A = 60 and g = acceleration due to gravity = 10 (It is a constant);
Subsituting values, we have:
= 0.6
We will have the following:

So, the force is approximately 1.85*10^-6 N.
Answer: Kinetic frictional force = 23.76N
Explanation: Please see the attachments below
Answer:
202.8m
Explanation:
Given that A pirate fires his cannon parallel to the water but 3.5 m above the water. The cannonball leaves the cannon with a velocity of 120 m/s. He misses his target and the cannonball splashes into the briny deep.
First calculate the total time travelled by using the second equation of motion
h = Ut + 1/2gt^2
Let assume that u = 0
And h = 3.5
Substitute all the parameters into the formula
3.5 = 1/2 × 9.8 × t^2
3.5 = 4.9t^2
t^2 = 3.5/4.9
t^2 = 0.7
t = 0.845s
To know how far the cannonball travel, let's use the equation
S = UT + 1/2at^2
But acceleration a = 0
T = 2t
T = 1.69s
S = 120 × 1.69
S = 202.834 m
Therefore, the distance travelled by the cannon ball is approximately 202.8m.