<h3>
Answer: 10.1 cm approximately</h3>
=====================================================
Explanation:
The double tickmarks show that segments DE and EB are the same length.
The diagram shows that DB = 16 cm long
We'll use these facts to find DE
DE+EB = DB
DE+DE = DB
2*DE = DB
DE = DB/2
DE = 16/2
DE = 8
-------------
Now let's focus on triangle DEC. We just found the horizontal leg is 8 units long. The vertical leg is EC which is unknown for now. We'll call it x. The hypotenuse is CD = 9
Use the pythagorean theorem to find x
a^2+b^2 = c^2
8^2+x^2 = 9^2
64+x^2 = 81
x^2 = 81 - 64
x^2 = 17
x = sqrt(17)
That makes EC to be exactly sqrt(17) units long.
If you follow those same steps for triangle ADE, then you'll find the missing length is AE = 6
---------------
So,
AC = AE+EC
AC = 6 + sqrt(17)
AC = 10.1231056256177
AC = 10.1 cm approximately
Answer:
Yes
Step-by-step explanation:
The points will be on the same line if they have the same slope. Calculate the slope of each pair. If the slopes are the same, then they lie on the same line.



The slope is the same.
He would travel 67 1/2 miles in an hour.
Answer:
5th
Step-by-step explanation: