Answer:
The order of elements by volume-fraction (which is approximately molecular mole-fraction) in the atmosphere is nitrogen (78.1%), oxygen (20.9%), argon (0.96%), followed by (in uncertain order) carbon and hydrogen because water vapor and carbon dioxide, which represent most of these two elements in the air, are variable.
I copied and pasted but I hope this information is helpful :)
Bromine vs Chlorine | Br vs Cl
Halogens are group VII elements in the periodic table, and all are electronegative elements and have the capability to produce -1 anions.
Bromine
Bromine is denoted by the symbol Br. This is in the 4th period of the periodic table between chlorine and iodine halogens. Its electronic configuration is [Ar] 4s2 3d10 4p5. The atomic number of bromine is 35. Its atomic mass is 79.904. Bromine staChlorine is an element in the periodic table which is denoted by Cl. It is a halogen (17th group) in the 3rd period of the periodic table. The atomic number of chlorine is 17; thus, it has seventeen protons and seventeen electrons. Its electron configuration is written as 1s2 2s2 2p6 3s2 3p5. Since the p sub level should have 6 electrons to obtain the Argon, noble gas electron configuration, chlorine has the ability to attract an electron. ys as a red-brown color liquid at room temperature.
Stationary Front: a front that is not moving. When a warm or cold front stops moving, it becomes a stationary front.
Answer:
I can answer 1 part Plasma is the fluid part of blood at least in bio(srry if it doesnt work)
Explanation:
Answer:
At one atmosphere and twenty-five degrees Celsius, could you turn it into a liquid by cooling it down? Um, and the key here is that the triple point eyes that minus fifty six point six degrees Celsius and it's at five point eleven ATMs. So at one atmospheric pressure, there's no way that you're ever going to reach the liquid days. So the first part of this question is the answer The answer to the first part of a question is no. How could you instead make the liquid at twenty-five degrees Celsius? Well, the critical point is at thirty-one point one degrees Celsius. So you know, if you're twenty-five, if you increase the pressure instead, you will briefly by it, be able to form a liquid. And if you continue Teo, you know, increase the pressure eventually form a salad, so increasing the pressure is the second part. If you increase the pressure of co two thirty-seven degrees Celsius, will you ever liquefy? No. Because then, if you're above thirty-one point one degrees Celsius in temperature. You'LL never be able to actually form the liquid. Instead, you'LL only is able Teo obtain supercritical co too, which is really cool thing. You know, they used supercritical sio tu tio decaffeinated coffee without, you know, adding a solvent that you'LL be able to taste, which is really cool. But no, you can't liquefy so two above thirty-one degrees Celsius or below five-point eleven atmospheric pressures anyway, that's how I answer this question. Hope this helped :)