1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jok3333 [9.3K]
3 years ago
12

Pete is driving down 7th Street. He drives 300 meters in 18 seconds. Assuming he does not speed up or slow down, what is his spe

ed in meters per second? Round answer to the hundredths place.
Physics
1 answer:
Korolek [52]3 years ago
3 0

Answer:

16.67m/s

Explanation:

Given parameters:

Distance Pete drove  = 300m

Time taken  = 18s

Unknown:

Speed  = ?

Solution:

Speed is the distance traveled per unit of time.

It is mathematically expressed as;

   Speed  = \frac{distance}{time}

Insert the parameters and solve;

  Speed  = \frac{300}{18}  = 16.67m/s

You might be interested in
A 1.20-m cylindrical rod of diameter 0.570 cm is connected to a power supply that maintains a constant potential difference of 1
nasty-shy [4]

(a) 1.72\cdot 10^{-5} \Omega m

The resistance of the rod is given by:

R=\rho \frac{L}{A} (1)

where

\rho is the material resistivity

L = 1.20 m is the length of the rod

A is the cross-sectional area

The radius of the rod is half the diameter: r=0.570 cm/2=0.285 cm=2.85\cdot 10^{-3} m, so the cross-sectional area is

A=\pi r^2=\pi (2.85\cdot 10^{-3} m)^2=2.55\cdot 10^{-5} m^2

The resistance at 20°C can be found by using Ohm's law. In fact, we know:

- The voltage at this temperature is V = 15.0 V

- The current at this temperature is I = 18.6 A

So, the resistance is

R=\frac{V}{I}=\frac{15.0 V}{18.6 A}=0.81 \Omega

And now we can re-arrange the eq.(1) to solve for the resistivity:

\rho=\frac{RA}{L}=\frac{(0.81 \Omega)(2.55\cdot 10^{-5} m^2)}{1.20 m}=1.72\cdot 10^{-5} \Omega m

(b) 8.57\cdot 10^{-4} /{\circ}C

First of all, let's find the new resistance of the wire at 92.0°C. In this case, the current is

I = 17.5 A

So the resistance is

R=\frac{V}{I}=\frac{15.0 V}{17.5 A}=0.86 \Omega

The equation that gives the change in resistance as a function of the temperature is

R(T)=R_0 (1+\alpha(T-T_0))

where

R(T)=0.86 \Omega is the resistance at the new temperature (92.0°C)

R_0=0.81 \Omega is the resistance at the original temperature (20.0°C)

\alpha is the temperature coefficient of resistivity

T=92^{\circ}C

T_0 = 20^{\circ}

Solving the formula for \alpha, we find

\alpha=\frac{\frac{R(T)}{R_0}-1}{T-T_0}=\frac{\frac{0.86 \Omega}{0.81 \Omega}-1}{92C-20C}=8.57\cdot 10^{-4} /{\circ}C

5 0
3 years ago
A ball is thrown upward from the top of a building at an angle of 30.0° to the horizontal and with
Ray Of Light [21]

Answer:

See below

Explanation:

Vertical position = 45 +  20 sin (30) t  - 4.9 t^2

 when it hits ground this = 0

               0 = -4.9t^2 + 20 sin (30 ) t + 45

                0 = -4.9t^2 + 10 t +45 = 0     solve for t =4.22 sec

  max height is at  t= - b/2a = 10/9.8 =1.02

     use this value of 't' in the equation to calculate max height = 50.1 m

      it has  4.22 - 1.02 to free fall = 3.2 seconds free fall

           v = at = 9.81 * 3.2 = 31.39 m/s VERTICAL

      it will <u>also</u> still have horizontal velocity =  20 cos 30 = 17.32 m/s

        total velocity will be sqrt ( 31.39^2 + 17.32^2) = 35.85 m/s

Horizontal range = 20 cos 30  * t  =  20 *  cos 30  * 4.22 = 73.1 m

8 0
2 years ago
What is the equation for potential energy?
Mrrafil [7]
You can calculate potential energy by:
U = m.g.h

Where, U = potential energy
m = mass
g = acceleration due to gravity
h = height

Hope this helps!
7 0
3 years ago
Read 2 more answers
4. What is the period of the microwaves in the above question?
Sidana [21]

Answer:

The period of a wave is the time for a particle on a medium to make one complete vibrational cycle. Period, being a time, is measured in units of time such as seconds, hours, days or years. The period of orbit for the Earth around the Sun is approximately 365 days; it takes 365 days for the Earth to complete a cycle.

6 0
3 years ago
An airplane weighing 11,000 N climbs to a
Gennadij [26K]

The power in horsepower is 40.1 hp

Explanation:

We start by calculating the work done by the airplane during the climb, which is equal to its change in gravitational potential energy:

W=(mg)\Delta h

where

mg = 11,000 N is the weight of the airplane

\Delta h = 1.6 km = 1600 m is the change in height

Substituting,

W=(11,000)(1600)=17.6\cdot 10^6 J

Now we can calculate the power delivered, which is given by

P=\frac{W}{t}

where

W=17.6\cdot 10^6 J is the work done

t=9.8 min \cdot 60 = 588 s is the time taken

Substituting,

P=\frac{17.6\cdot 10^6 J}{588}=2.99\cdot 10^4 W

Finally, we can convert the power into horsepower (hp), keeping in mind that

1 hp = 746 W

Therefore,

P=\frac{2.99\cdot 10^4}{746}=40.1 hp

Learn more about power:

brainly.com/question/7956557

#LearnwithBrainly

8 0
3 years ago
Other questions:
  • What pressure expressed in pascals equals 70 N/m2?
    15·2 answers
  • Over time, all the negative charges in an object,
    8·1 answer
  • Can someone help me on #18 - #26? At least one ☝️ I really need help!!!
    10·1 answer
  • A carbon dioxide laser produces radiation with a wavelength of 1.06 x 104 nm. What is the frequency of this radiation?
    7·1 answer
  • - A 9,300 kg. railroad car traveling at a velocity of 15m/s strikes a second boxcar
    6·1 answer
  • Help asap
    12·1 answer
  • How much time would it take a train locomotive running at 6000 Horsepower to use the
    9·1 answer
  • To remove a nut from an old rusty bolt, you apply a 100-N force to the
    9·1 answer
  • What is one way to store a lot of potential energy in the field between two charged objects?
    5·1 answer
  • How does convection current helps cooling the system of engines
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!