Answer:
W₂= 10000 N
Explanation:
Pascal´s Principle can be applied in the hydraulic press:
If we apply a small force (F1) on a small area piston A1, then, a pressure (P) is generated that is transmitted equally to all the particles of the liquid until it reaches a larger area piston and therefore a force (F2) can be exerted that is proportional to the area (A2) of the piston:
Pressure is defined as the force (F) applied per unit area (A)
P=F/A (N/m²)
P1=P2
Equation (1)
Data
W₁ = weight sits on the small piston
F₁ = W₁= 500 N
A₁ = 2.0 cm²
A₂ = 40 cm²
Calculation of the weight (W₂) can the large piston support
We replace data in the equation (1)
F₂ = 10000 N
W₂= F₂= 10000 N
2.72 N
Explanation:
Step 1:
From the basic formula in electrostatics
F = E * q
where F = Force due to charges
E = Electric field strength
q = Charge
Step 2:
From the given question
q=
E =
F = N
Answer:
the third stage was 480 km long
Explanation:
Stage 1:
Time = 1 hours
Speed = 80km
Stage 2:
Time = 2 hours
Speed = 200km
Stage 3:
Time = 4 hours
Let the Distance at the stage 3 be x
Average speed of the train route = 100 km/h
So
Lets find the speed at stage 1
Speed =
Speed =
Speed 1= 80 km/hr
The speed at stage 2
Speed =
Speed =
Speed 2 = 100 km/hr
The speed at stage 3
Speed =
Speed =
Speed 3 =
we kow that average is ,
x = 480
Answer:
Speed; v = 17 m/s
Explanation:
We are given;
Radius; r = 110m
Angle; θ = 15°
Now, we know that in circular motion,
v² = rg•tanθ
Thus,
v = √(rg•tanθ)
Where,
v is velocity
r is radius
g is acceleration due to gravity
θ is the angle
Thus,
v = √(rg•tanθ) = √(110 x 9.8•tan15)
v = √(288.85)
v = 17 m/s