If i could heat a piece of iron so that it melted, and then held a magnet close to the molten iron and then let the iron cool to room temperature, you could use a microscope to look at the iron and tell that a magnet had been present during cooling. you could even tell if it was the north or south pole of the magnet that i held close to the molten iron.
Magma/lava contains a lot of molten iron so that when it erupts from a volcano and cools, the magnetic field of the earth leaves an imprint in it, just like the cooling iron from above. From this imprint we can tell the strength of the magnetic field and also which direction the north and south poles were at the time.
Answer:
Chemical etching is a process of printed circuit board (PCB) manufacturing that provides many advantages over mechanical methods.
Explanation:
There's one! UvU hope this helped in whatever you're in for! <3
Good Luck!
Answer:
a) 2.7s
b) 29 m/s
Explanation:
The equation for the velocity and position of a free fall are the following
-(1)
- (2)
Since the hot-air ballon is <em>descending </em>at 2.1m/s and the camera is dropped at 42 m above the ground:


To calculate the time which it takes to reach the ground we use eq(2) with x=0, and look for the positive solution of t:

t = 2.71996
Rounding to two significant figures:
t = 2.7 s
Now we calculate the velocity the camera had just before it lands using eq(1) with t=2.7s
v = -28.782 m/s
Rounding to two significant figures:
v = -29 m/s
where the minus sign indicates the downwards direction
Answer:
Atoms in a element on the periodic table I dont know which one tho so try google that sorry I am not much of a help
Explanation:
Answer:
see explanation
Explanation:
Given that,
velocity of 1.50 km/s = 1.50 × 10³m/s
acceleration of 2.00 ✕ 1012 m/s2
electric field has a magnitude of strength of 18.0 N/C
![\bar F= q[\bar E + \bar V \times \bar B]\\\\\bar F = [\bar E + \bar V \times ( B_x \hat i +B_y \hat j +B_z \hat z )]\\\\\\m \bar a = [\bar E + \bar V \times ( B_x \hat i +B_y \hat j +B_z \hat z )]](https://tex.z-dn.net/?f=%5Cbar%20F%3D%20q%5B%5Cbar%20E%20%2B%20%5Cbar%20V%20%5Ctimes%20%5Cbar%20B%5D%5C%5C%5C%5C%5Cbar%20F%20%3D%20%5B%5Cbar%20E%20%2B%20%5Cbar%20V%20%5Ctimes%20%28%20B_x%20%5Chat%20i%20%2BB_y%20%5Chat%20j%20%2BB_z%20%5Chat%20z%20%29%5D%5C%5C%5C%5C%5C%5Cm%20%5Cbar%20a%20%3D%20%5B%5Cbar%20E%20%2B%20%5Cbar%20V%20%5Ctimes%20%28%20B_x%20%5Chat%20i%20%2BB_y%20%5Chat%20j%20%2BB_z%20%5Chat%20z%20%29%5D)
![9.1 \times 10^-^3^1 \times 2\times 10^1^2 \hat k=-1.6\times10^-^1^9 \hat k [18\hat k+ 1.5\times 10^3 \hat i \times (B_x \hat i +B_y \hat j +B_z \hat k)]](https://tex.z-dn.net/?f=9.1%20%5Ctimes%2010%5E-%5E3%5E1%20%5Ctimes%202%5Ctimes%2010%5E1%5E2%20%5Chat%20k%3D-1.6%5Ctimes10%5E-%5E1%5E9%20%5Chat%20k%20%5B18%5Chat%20k%2B%201.5%5Ctimes%2010%5E3%20%5Chat%20i%20%5Ctimes%20%28B_x%20%5Chat%20i%20%2BB_y%20%5Chat%20j%20%2BB_z%20%5Chat%20k%29%5D)



