A. SO2Cl2(g) --> SO2(g) + Cl2(g)
<span>1 mole of SOCl2 becomes 1 mole SO2 and 1 mole Cl2 </span>
<span>1 mole --> 2 moles </span>
<span>entropy increases </span>
It is a.combination that is the correct answer i think
Wait is that suppose to be a question??!!
Answer:
1. 0.00040 calories
2. 8.57 calories
3. 0.196 calories
4. 68 calories
5. 243 calories
6. 83680 joules
7. 1,054,368 joules
8. 2.45 calories
9. 556 (it says calories to calories so it wouldn't change)
10. 28367.52 joules
11. 59.6 calories
12. 449.6 joules
13. 0.00234 calories
14. 23292.328 joules
15. 22877693.6 joules
Hope this helps!
Explanation:
Answer:
- <em>The volume of 14.0 g of nitrogen gas at STP is </em><u><em>11.2 liter.</em></u>
Explanation:
STP stands for standard pressure and temperature.
The International Institute of of Pure and Applied Chemistry, IUPAC changed the definition of standard temperature and pressure (STP) in 1982:
- Before the change, STP was defined as a temperature of 273.15 K and an absolute pressure of exactly 1 atm (101.325 kPa).
- After the change, STP is defined as a temperature of 273.15 K and an absolute pressure of exactly 105 Pa (100 kPa, 1 bar).
Using the ideal gas equation of state, PV = nRT you can calculate the volume of one mole (n = 1) of gas. With the former definition, the volume of a mol of gas at STP, rounded to 3 significant figures, was 22.4 liter. This is classical well known result.
With the later definition, the volume of a mol of gas at STP is 22.7 liter.
I will use the traditional measure of 22.4 liter per mole of gas.
<u>1) Convert 14.0 g of nitrogen gas to number of moles:</u>
- n = mass in grams / molar mass
- Atomic mass of nitrogen: 14.0 g/mol
- Nitrogen gas is a diatomic molecule, so the molar mass of nitrogen gas = molar mass of N₂ = 14.0 × 2 g/mol = 28.0 g/mol
- n = 14.0 g / 28.0 g/mol = 0.500 mol
<u>2) Set a proportion to calculate the volume of nitrogen gas:</u>
- 22.4 liter / mol = x / 0.500 mol
- Solve for x: x = 0.500 mol × 22.4 liter / mol = 11.2 liter.
<u>Conclusion:</u> the volume of 14.0 g of nitrogen gas at STP is 11.2 liter.