Answer:
Dark matter makes up 85% of the mass of the universe. Dark matter is not directly observable because it doesn't interact with any electromagnetic wave. In the development of the universe, without dark matter, the universe will not function, move or rotate as it does now (this speculation led to the quest to find the anomaly of mass and energy in the known universe, eventually leading to the idealization of dark matter) and will not have enough gravitational force to hold it together. After the big bang,<em> the presence of dark matter and energy ensured that the newly formed universe didn't just float away, rather, it provided enough gravitational force to hold the universe while still allowing it to expand sufficiently</em>.
The development of the universe would have been different without the universe in the sense that the young universe won't have enough mass to hold it together, and the universe would have simply floated apart. The behavior of the universe would have been different from what we observe now, and some physical laws that applies now will not apply to the universe.
it would be a crystalline solid, because it could be extended in multiple directions.
Answer:
12.7mol Na.
Explanation:
Hello there!
In this case, according to the concept of mole, which stands for the amount of substance, we can recall the concept of Avogadro's number whereby we understand that one mole of any substance contains 6.022x10²³ particles, for the given atoms of sodium, we can calculate the moles as shown below:

Thus, by performing the division we obtain:

Regards!
B. Heat is a form of energy so boiling it would increase energy. (I guess)
The answer choice is going to be B.