The grams of N2 that are required to produce 100.0 l of NH3 at STP
At stp 1moles = 22.4 l. what about 100.0 L of NH3
= 100 / 22.4 lx1 moles = 4.46 moles of NH3
write the reacting equation
N2+3H2 =2NH3
by use of mole ratio between N2 to NH3 which is 1:2 the moles of N2 =4.46/2 =2.23 moles of N2
mass = moles x molar mass
= 2.23moles x 28 g/mol = 62.4 grams
If a hypothesis is stated and outcome of the experiment is what was predicted, then it supports the hypothesis. if the experiment does not support the hypothesis, then the outcome was not what was predicted.
Answer:
53.1 mL
Explanation:
Let's assume an ideal gas, and at the Standard Temperature and Pressure are equal to 273 K and 101.325 kPa.
For the ideal gas law:
P1*V1/T1 = P2*V2/T2
Where P is the pressure, V is the volume, T is temperature, 1 is the initial state and 2 the final state.
At the eudiometer, there is a mixture between the gas and the water vapor, thus, the total pressure is the sum of the partial pressure of the components. The pressure of the gas is:
P1 = 92.5 - 2.8 = 89.7 kPa
T1 = 23°C + 273 = 296 K
89.7*65/296 = 101.325*V2/273
101.325V2 = 5377.45
V2 = 53.1 mL
City B. Higher altitudes have lower boiling points due to lower atmospheric pressure at higher altitudes
Answer:
metal ball that moves at high speed
Explanation: