Answer:
Ammonium chloride has ammonium (NH4 +) part which is slightly acidic and Barium Hydroxide is a strong base.
You can see that an acid-base reaction will occur.
In this case :
Its highly endothermic reaction
Forms aqueous ammonia (mind that ammonia is highly water soluble gas so no effervesence) and Barium Chloride which is water soluble.
Ba(OH)2 +NH4Cl ——->BaCl2 + NH3 +H2O (unbalanced)
D NACL because it is ionic bond and all the others are covalent
Answer:
0.0428 M
Explanation:
Because we're asked to calculate the molarity of nickel(II) cation, we need to <u>determine all sources for that species</u>, in this case, all Ni⁺² comes from the nickel(II) bromide solid (NiBr₂).
We use the molecular weight of NiBr₂ to calculate the moles of Ni:
1.87 g NiBr₂ ÷ 218.49g/mol * (1molNi⁺²/1molNiBr₂) = 8.55x10⁻³ mol Ni⁺²
Then we <u>divide the moles by the volume in order to calculate the concentration</u>:
8.55x10⁻³ mol Ni⁺² / 0.200 L = 0.0428 M
•3.9g of ammonia
•molar mass of ammonia = 17.03g/mol
1st you have to covert grams to moles by dividing the mass of ammonia with the molar mass:
(3.9 g)/ (17.03g/mol) = 0.22900763mols
Then convert the moles to molecules by multiplying it with Avogadro’s number:
Avogadro’s number: 6.022 x 10^23
0.22900763mols x (6.022 x 10^23 molecs/mol)
= 1.38 x 10^23 molecules
It makes the bronze stronger and harder than either of the other two medals