Answer:
-196 kJ
Explanation:
By the Hess' Law, the enthalpy of a global reaction is the sum of the enthalpies of the steps reactions. If the reaction is multiplied by a constant, the value of the enthalpy must be multiplied by the same constant, and if the reaction is inverted, the signal of the enthalpy must be inverted too.
2S(s) + 3O₂(g) → 2SO₃(g) ΔH = -790 kJ
S(s) + O₂(g) → SO₂(g) ΔH = -297 kJ (inverted and multiplied by 2)
2S(s) + 3O₂(g) → 2SO₃(g) ΔH = -790 kJ
2SO₂(g) → 2S(s) + 2O₂(g) ΔH = +594 kJ
-------------------------------------------------------------
2S(s) + 3O₂(g) + 2SO₂(g) → 2SO₃(g) + 2S(s) + 2O₂(g)
Simplifing the compounds that are in both sides (bolded):
2SO₂(g) + O₂(g) → 2SO₃(g) ΔH = -790 + 594 = -196 kJ
Since the temperature
is a constant, we can use Boyle's law to solve this.<span>
<span>Boyle' law says "at a constant temperature, the
pressure of a fixed amount of an ideal gas is inversely proportional to its
volume.
P α 1/V
</span>⇒
PV = k (constant)<span>
Where, P is the pressure of the gas and V is the
volume.
<span>Here, we assume that the </span>gas in the balloon is an ideal gas.
We can use Boyle's law for these two situations as,
P</span>₁V₁ = P₂V₂<span>
P₁ = 100.0 kPa = 1 x 10⁵ Pa
V₁ =
3.3 L
P₂ =
90.0 x 10³ Pa
V₂ =?
By substitution,
1 x 10⁵ Pa x 3.3 L = 90 x 10³ Pa x V₂</span><span>
V</span>₂ = 3.7 L<span>
</span><span>Hence, the volume of gas when pressure is 90.0 kPa
is 3.7 L.</span></span>
Answer:
Have 2 filled orbitals and 3 partially filled orbitals.
Explanation:
Hello there!
In this case, according to the given information of the electron configuration for that particle; it is possible for us to infer it has 5 valence electrons, as the electrons on its outermost shell (2). Moreover, we undertand this particle needs three bonds, does not have neither the electron configuration of a noble gas which ends by p⁶ nor that of an alkali earth metal as it ends by s².
Therefore, we infer the correct answer is Have 2 filled orbitals and 3 partially filled orbitals because according to the Hund's rule, the s orbital is fulfilled and the p orbital has 1 electron orbital fulfilled and two partially filled orbitals.
Regards!
Answer:
c) more OH⁻ ions than H₃O⁺ ions
Explanation:
A substance with a PH of 9 implies that it has more OH⁻ ions than H₃O⁺ ions.
Such substances are said to be an alkaline or a base.
A base is a substance the produces excess hydroxyl ion in aqueous solutions.
An acid will produce excess hydroxonium ions in a solution.
So, the pH scale is used to indicate whether a substance is an acid or base or non of them.
Acids have pH of less than 7
Bases have pH of > 7
The final temperature : 345 K
<h3>
Further explanation
</h3>
Given
475 cm³ initial volume
600 cm³ final volume
Required
The final temperature
Solution
At standard temperature and pressure , T = 273 K and 1 atm
Charles's Law :
When the gas pressure is kept constant, the gas volume is proportional to the temperature
V₁/T₁=V₂/T₂
Input the value :
T₂=(V₂T₁)/V₁
T₂=(600 x 273)/475
T₂=345 K