<h2>
Distance traveled in 1 second after drop is 4.9 m</h2><h2>
Distance traveled in 4 seconds after drop is 78.4 m</h2>
Explanation:
We have s = ut + 0.5at²
For a free falling object initial velocity u = 0 m/s and acceleration due to gravity, g = 9.8 m/s²
Substituting
s = 0 x t + 0.5 x 9.8 x t²
s = 4.9t²
We need to find distance traveled in 1 s and 4 s
Distance traveled in 1 second
s = 4.9 x 1² = 4.9 m
Distance traveled in 4 seconds
s = 4.9 x 4² = 78.4 m
Distance traveled in 1 second after drop = 4.9 m
Distance traveled in 4 seconds after drop = 78.4 m
Answer: elastic potential energy
Explanation:
Group 17 is the second column from the right in the periodic table and contains six elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), astatine (As), and (Ts). Astatine and are radioactive elements with very short half-lives and thus do not occur naturally.
Answer:
80 km
Explanation:
Since 240 divided by three is 80, the velocity the car is traveling at is 80 kilometers per hour.
We are given with the expression d = ut + 0.5 at^2 and is asked to express the equation in terms of a. First, we transpose ut to the left side, then we multiply to the equation and divide lastly the resulting equation by t^2. The final expression becomes a = 2(d-ut)/t^2.